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CHAOS CONTROL AND PLASTICITY IN LARGE SCALE NEURONAL NETWORKS WITH

ONGOING ACTIVITY

Résumé

Comprendre comment s’organisent et fonctionnent les aires sensorielles primaires du neocortex
est une étape cruciale pour l’analyse des mécanismes sous tendant le fonctionnement, d’un point de
vue algorithmique, de l’activité cérébrale. Cette compréhension de la dynamique sensorielle à grande
échelle passe par l’utilisation de modèles de neurones simplifiés, du type “intègre et tire”, et par un
cadre de travail particulier, celui du réseau “balancé”, permettant de se placer dans un régime proche
de ceux observés dans l’activité spontanée in vivo, où les neurones déchargent de façon irrégulière et à
relativement basse fréquence.

La première partie de cette thèse montre, par des simulations grande échelle et l’utilisation de pat-
terns de stimulations ayant des statistiques proches de l’activité spontanée passée, que des réseaux de
neurones dans des régimes irréguliers et asynchrones comme le cortex visuel in vivo pourrait fonction-
ner au bord d’un régime dynamique particulier, le chaos déterministe. Alors que l’activité spontanée
de ces réseaux est souvent considérée comme du bruit, la structure particulière de cette activité issue
de la connectivité récurrente peut avoir un rôle particulier pour la dynamique fonctionnelle du réseau.
Cette étude permet de mieux comprendre la propagation d’information dans le contexte de l’activité
persistante des réseaux récurrents. Par ailleurs, une étude menée en collaboration sur des données in-
tracellulaires in vitro et in vivo permet de mieux comprendre comment le niveau global de corrélation
au sein du réseau peut être observé via l’analyse du spectre de puissance de la trace du potentiel mem-
branaire d’un neurone. La similarité entre le niveau de corrélation au repos (en activité spontanée), et
lorsque le neurone traite une scène visuelle avec des statistiques naturelles nous permettra de conforter
le lien entre activité spontanée et activité évoquée, et la possibilité que l’activité spontanée rejoue des
patterns sensoriels mémorisés au cours de l’interaction avec l’environnement.

L’analyse analytique et exacte de la dynamique de tels réseaux de neurones, dits balancés, dans des
régimes asynchrones irréguliers se révèle impraticable pour des réseaux construits avec des paramètres
biophysiques : lorsque la connectivité devient plus structurée, que des vitesses de propagation finies
sont prises en considération, la zoologie des dynamique observables s’apprécie principalement via
des explorations numériques. Une partie de mon travail s’est donc naturellement portée sur l’étude
et la compréhension des paramètres clés gouvernants la dynamique de réseaux topographiques, plus
particulièrement en ce qui concerne la distribution des corrélations inter-neurones en fonction de la
distance. Plusieurs évidences montrent en effet que ces corrélations entre décharges neuronales peuvent
refléter la nature du codage de l’information au sein du cerveau, rendant important de comprendre
comment ces dernières s’organisent et quels sont les paramètres les contrôlant. En s’intéressant plus
particulièrement au cas des régimes synchrones réguliers, où ces corrélations sont plus marquées, nous
montrerons que ces corrélations sont principalement imposées par la balance excitation/inhibition, et
comment elles peuvent être modulées via une stimulation extérieure.

Pour essayer d’enseigner des statistiques ou motifs particuliers au réseau qui seront reflétées
ultérieurement dans son activité spontanée, dans le cadre d’un apprentissage non supervisé, la connec-
tivité au sein du réseau doit s’auto-organiser en fonction de l’activité. Un candidat idéal pour assurer
ces modifications est une règle de plasticité dépendante du temps précis d’arrivée des potentiels d’ac-
tion, appelée Spike Timing Dependent Plasticity (STDP). Cette règle (Markram and Tsodyks, 1996,
Bi and Poo, 1998), observée principalement in vitro, montre que si deux neurones ont une décharge
causale (le neurone pré-synaptique étant actif juste avant le neurone post-synaptique), la synapse liant
ces deux neurones est renforcée : l’information du neurone pré-synaptique a été utile et pertinente a la
décharge du neurone post. Inversement, si les décharges sont acausales, a savoir si pre est actif après
post, la synapse se trouve diminuée. Cette règle, intéressante dans sa formulation la plus simple, souf-
fre néanmoins de nombreux problèmes lorsque utilisée dans des réseaux large échelle. Une nouvelle
règle de plasticité synaptique sera donc explorée, incluant des contraintes d’homéostasie et de méta
plasticité. Cette hypothèse permet de réconcilier différents schémas de plasticités théoriques par des
mécanismes biophysiques réalistes. Son intérêt fonctionnel est de permettre au même réseau corti-



cal de traiter de manière fiable l’information sensorielle tout en engrammant les associations causales
nouvelles crées par l’interaction avec l’environnement sensoriel.

Toutes les simulations de cette thèse ont été faites en prenant en compte l’hétérogénéité des
différents outils de simulation disponibles. Dans le but d’unifier tous ces outils, un travail d’ho-
mogénéisation a été effectué pour simplifier la confrontation des résultats obtenus via différents outils
de simulation. Plus spécifiquement, une interface de programmation en Python, PyNN, a été écrite
et développée pour permettre la définition d’un langage commun à différents logiciels de simulations.
Cette unification est importante pour la structuration du domaine des neurosciences computationnelles,
pour augmenter la confiance dans des simulations complexes où la certitude que le résultat ne dépend
pas des méthodes de simulations considérées doit être écartée.
Mots-clefs : Réseaux de neurone, traitement de l’information, plasticité, outils de simulations.

Abstract
Understanding how the primary sensory areas of the neocortex are structured in order to process

sensory inputs is a crucial step in analysing the mechanisms underlying the functional role, from an
algorithmic point of view, of cerebral activity. This understanding of the sensory dynamics, at a large
scale level, implies using simplified models of neurons, such as the “integrate-and-fire models”, and
a particular framework, the “balanced” network, which allows the recreation of dynamical regimes of
conductances close to those observed in vivo, in which neurons spike at low rates and with an irregular
discharge.

The first part of this thesis shows, using large scale simulations and particular patterns of stimu-
lation whose statistics are close to those of the spontaneous activity, that such neuronal networks in
asynchronous and irregular firing states, such as the primary visual cortex in vivo can operate at the
border of a particular dynamical regime, deterministic chaos. While the ongoing activity of those net-
works is often considered as noise, the particular structure of this activity, emerging from the recurrent
connectivity, could have a functional role in information processing. This study allows to better un-
derstand information transmission within the context of persistent activity, inherent to those networks.
In the meanwhile, a study led in collaboration on intra-cellular recordings in vivo and in vitro allows
to have a better insight on how the global level of correlation received by a neuron can be observed
by analysis of the power spectrum of the membrane potential recorded intracelullarly. The similarity
between the level of correlation in the resting state (in spontaneous activity, while no inputs are pre-
sented to the system) and when the network processes information coming from a visual scene with
natural statistics will enforce the link between spontaneous and evoked activities, and the possibility
that ongoing activity replays sensory patterns stored during the interaction with the environment.

An exact mathematical analysis of the dynamics in such balanced neuronal networks, in asyn-
chronous and irregular regimes, is hardly tractable when networks are built with biophysical parame-
ters. Particularly, when connectivity is not random but structured and when finite axonal propagation
speeds are taken into account, the diversity of the dynamics that can be observed has to be studied with
numerical simulations. Part of my work was then focused on the study and the understanding of the
key parameters governing the behaviour of such topographical neuronal networks, more particularly
regarding the distribution of the correlations between pairs of neurons as a function of distance. Since
several pieces of biological evidence show that these pairwise correlations may be an important part
of the neural code in the brain, it is important to know how they emerge, and what parameters can
influence their distributions. By focusing more particularly on the synchronous regular regimes, where
correlations are more pronounced, we have shown that they are mainly driven by the balance between
excitation and inhibition, and how they can be modulated by external stimulations.

To try to store some particular statistics or patterns to a neuronal network, and to see if a trace of
this learning is kept in the ongoing activity in the framework of unsupervised learning, the connectivity
within the neuronal network must evolve as a function of the activity. An recent candidate to achieve
such unsupervised changes is a plasticity rule depending on the precise arrival time of the actions



potentials, called spike timing dependent plasticity (STDP). This rule (Markram and Tsodyks, 1996,
Bi and Poo, 1998), observed mainly in vitro, shows that if two neurons have a causal discharge (the pre-
synaptic neuron firing just before the post-synaptic one), the synapse between them is reinforced: the
information of the pre-synaptic neuron has been useful and pertinent for the post-synaptic one. On the
contrary, if the discharges are not causal, meaning if pre is active after post, the synapse is weakened.
This rule, interesting in its general formulation, suffers from a lot of problems when used in recurrent
large-scale networks. A new rule of plasticity was therefore explored, incorporating some homeostatic
constraints in the framework of metaplasticity. This hypothesis can link different theoretical schemes
of plasticity by the definition of a biophysically realistic mechanism. The functional interest is to be
able to process incoming sensory informations in a cortical network, and at the same time, to store the
causal associations generated by the interaction with the sensory environment.

All the simulations in this thesis were made while taking into account the heterogeneity of the
simulation tools available. With the target goal of unifying all these tools, a work has been performed
to simplify the comparison between results obtained with various simulators. More precisely, an ap-
plication programming interface in Python, PyNN, has been designed and implemented to allow the
definition of a common language for large-scale neuronal network simulations. This unification pro-
cess is important and valuable for the consolidation of the neuroscience community, to gain confidence
in the results of complex simulations, where the certainty that the final results do not depend on the
simulations strategies considered should be banished.

Keywords : Neuronal networks, information processing, plasticity, simulation tools.
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Introduction

“Les hommes se croient libres parce qu’ils ont conscience de leurs volitions et de leur appétit,
et qu’ils ne pensent pas, même en rêve, aux causes qui les disposent à désirer et à vouloir,
parce qu’ils les ignorent.”
Spinoza, Ethique, I, Appendice, 1677

A living organism can be seen as a response to the environment, provided through a com-
plex and uncontrolled evolutionary process. Accorded to the theory of Darwin (1859), every
organism is fighting for its own survival, and this permanent struggle progressively shapes
organisms able to react, adapt, and reproduce themselves, taking into account all their sur-
roundings. Nothing is constant in the world, except these changes.

Whether behaviours are hard-wired or resulting from internal and computations performed by
the brain, organisms need to have fast and appropriate responses to well-defined situations,
and the slow evolutionary forces gradually selecting species push for organisms more and
more suited to such fast responses, through complex and hidden constraints imposed by the
external world. Only those able to adapt are kept in the next generation, and adaptation re-
quires and imposes an understanding and an integration of the environment. In that evolution-
ary spirit of better capturing the essence of the surrounding world, the central nervous system
has been turned into a prominent integration center, gathering every inputs signal received
from the sensory modalities in order to, provide appropriate responses, as fast as possible. It
can be a spoken word, a quick jump, an uncontrolled feeling, but it is always the result of an
ongoing computation, performed by the brain constantly impinged upon by sensory inputs.

Indeed, the brain is an efficient computational device for integrating multi-modal information
coming from the sensory world, and turning them into behaviour. Computational neuroscience
is the attempt to understand, with equations, how the brain processes and deals with informa-
tion. Without aiming to answer the philosophical question ”Who am I ?”, it is a pragmatic
attempt to reveal the basis of brain computations, and to understand the basic principles of
neuronal dynamics.

Computational neuroscience

The goal of computational neuroscience is to understand the underlying properties of the in-
formation processing tasks performed by the brain. The term “computational”, which comes
from the Latin word computare, refers to logically and mathematically well-defined computa-
tions, and therefore sets the formal background of the field, at the intersection of mathematics,
computer science, theoretical physics and biology. Computational neuroscience aims to dis-
sect and observe, from an algorithmic point of view and based on biological observations and
recordings, the activity of the brain. How the brain encodes information and how a group of
electrical impulses is converted into an action or a thought is a fascinating question, leading
and embracing various fields such as philosophy, artificial intelligence, robotics, computer
science and ethics.

The motivations of computational neuroscience are numerous. Setting aside philosophical
questions and the question of consciousness, a better comprehension of the neuronal code and
dynamics can tremendously help and guide certain medical treatments and prostheses. Pop-
ular success, which are direct consequences of the understanding of the brain, are: cochlear
implants, neuronal prostheses that can recover the loss of a member such as an arm, deep brain
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stimulation to treat chronic pain, Parkinson’s disease or preventing epileptic crises, brain ma-
chine interfaces (BMI) allowing the to control, by on-line processing of brain activity recorded
through various sensors, a third apparatus that can be either an electronic arm or a mouse cur-
sor on a screen. In the case of paraplegia or lock-in syndrome, brain can be fully functional
and operational, but the nerves may not be able to transmit motor commands. Moreover,
gaining a clear understanding of the brain is fundamental to design more efficient drugs and
treatments. A lot of untreatable diseases nowadays involve the brain, nerves or neurons, since
the brain is the most complex organ in the human body. Treatment of autism, schizophrenia,
depression and many more, all those neuronal disorder may gain from a better understanding
of brain activity.

The classical method commonly used to analyse the brain, in order to deal with such a com-
plex system, is to try to isolate all its key elements and, knowing how every single small
building block works, to try to infer the global activity by putting together all these individual
behaviours. This generic method is not restricted to computational neuroscience, but in our
case, for the brain, one needs to focus on elements such as neurons, axons, dendrites, synapses,
glia, neurotransmitters, neuromodulators, ion channels, and so on, and all of these need to be
understood and properly modelled in order to have a clear insight about their roles and their
effects. Capturing their fundamental characteristics is achieved by the design of biophysical
models, reproducing experimental results obtained with experiments in vivo or in vitro. Those
models are an attempt to turn a physical element or a physical system into variables and equa-
tions reflecting biologically observed quantities. The main biophysical models that underlie
this manuscript will be briefly reviewed later in Part I. These will be our essential building
blocks. The only problem is that such a bottom up approach is not possible in practice. In
theory, it could be achieved, but theory is too often far from reality. Being able to have a clear
understanding of all these individual subunits would require to be able to separate them in a
clean manner, to suppose that they can be understood independently, that interactions between
them are linear, and so on. Knowing what is a sand grain and what happens with a small pile
of sand grains does not explain the complex behaviour of a sand dune. Non linear interactions
and complex properties may emerge when such individual building blocks are gathered, and
it is a challenge to get a clear idea about where the key interactions lie. From this comes the
need for theory and predictions.

The converse approach, top to bottom, can be seen as a black-box approach, also widely used
in computational neuroscience. Since having access to detailed information about all the in-
dividual sub-blocks of the system is near impossible, and even if it were not, since knowing
the non-linearities of their interactions is certainly impossible, one can present inputs to the
system, measure its responses, and try to infer what the mechanisms and the interactions be-
tween the sub-blocks should be, in order to explain its general response. One drawback of
this method is that the state of the system itself can bias the observations that are performed.
If one thinks about in vivo experiments, when brain activity is recorded, these recordings are
often made under anaesthesia, or at least in experimental conditions that may be far from
the real working conditions of the system. This unknown bias is the price to pay, and what
needs to always be kept in mind is the distinct hypothesis that has been made to get an intu-
ition about how this tremendously complex system works. This black-box approach led, in
psychology, to the notion of behaviourism: the idea that organisms should be studied only
through their behaviours and responses to external stimuli and the environment. Nevertheless,
behaviourism has been turned nowadays into cognitive science, with the combined idea that
even if the observation of the behaviour is important, one can still try to make testable infer-
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Human Brain Blue Gene computer
Neurons/Processors 1012 104

Synapses/Memory 1016 bytes 1011 bytes
Operations 1017 flops 1014 flops

Power Consumption 20 W 505000 W + cooling
Frequency ' 5 Hz 2 GHz

Parallel scheme Asynchronous Synchronous

Figure 1: Comparison between some key functional properties of the brain and a modern
supercomputer, such as the Blue Gene.

ences about brain processes underlying it. An infinite set of responses can still be generated
by a finite number or combinations of mental processes and computational neuroscience aims
at revealing them by a reverse engineering approach.

The brain as a computing device

The brain is a computational device made of neurons able to efficiently process the huge flow
of sensory information that is constantly impinging upon organisms, in order to extract rel-
evant information and produce an adequate behavioural action as a response. The parallel
between binary signals that have been conceived in binary logic, at the source of modern
computer science, and the all-or-nothing behaviour of a neuronal spike is appealing for the-
oretical consideration, and since we are now entering a world where computer science and
information technology is more and more pervasive, every optimisation that could be gained
from the observation of the brain’s behaviour is valuable. To focus only on the visual system,
if one considers a rather simple and low-level task, performed by almost every mammal, such
as image categorization, the brain is able, in less than 200 ms, to discriminate a particular item
in an image. This is the so-called go or no-go experiment reported in Thorpe et al. (1996) in
monkeys. Detecting a face in a crowd, segmenting an image, detecting a salient point in a vi-
sual scene, all of these algorithmic tasks are performed almost instantaneously, in an effortless
manner, by the visual system while it is still a challenge for real computers. Edge detection
under several luminosity levels, or dealing with partial or complete masking objects, requires
complex algorithms and a lot of external knowledge to have a result which is still slower and
less efficient that the one given by the brain. One has only to consider in Table 1 some simi-
larities and differences between a Blue Gene computer and a human brain to measure the gap
between these two philosophies of computation.

The brain is a massively asynchronous and low-frequency device, while computer science
has had the tendency to consider sequential computations, and to work at higher and higher
frequencies in order to make them faster. This second strategy is currently showing its lim-
itations, both in Moore’s law Moore (1998) and in the energy consumption and the cooling
problem. Computer science is more and more interested in reducing power consumption, and
in designing multi-core computations that can be launched in parallel, in order to break the se-
quential framework of the von Neumann machine. The new design of what will be the future
of computer science should be made by being as close as possible to what has already been
conceived by evolution. Moving to less energy consuming cores working at lower frequencies,
but exchanging information in a more efficient way, is an attempt to go toward neuromorphic
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architectures of computation, closer to the brain.

Since the first cartography of brain functions performed by Brodman in 1909, who noticed that
the brain cortex was organized in distinct areas, each of them responsible for some specialized
coding functions, a particular interest has been devoted to the so called “primary” sensory
areas. Dissecting the brain and trying to link its shape and/or activity to behaviour is an
active field of research and after a lot of progress achieved in anatomy and microscopy, two
world wars and a better understanding of mental diseases (based on a lot of case studies
with lesions and brain pathology), we have nowadays a fairly good picture of these primary
sensory cortical areas which may be sufficient to pretend that a clear understanding of their
functional role is possible. These areas (vision, somatosensory, hearing, taste, olfaction) are
the first entrance stages of the sensory inputs in the neocortex. Schematically, sensory inputs
gathered by sensors and converted, by transduction mechanisms, from the physical world to
electrical impulsions are sent, after a relay in the thalamus to the cortex, in dedicated areas that
process and broadcast their results to higher areas. These primary sensory areas are therefore
very good candidates to understand the basis operations performed by neurons, and how the
transduction of an input signal affects the dynamics of a population of neurons. As a first
processing stage, they are supposed to form a simple basis where information is decomposed
and encoded, before being reliably transmitted to higher order areas that will, based on those
low-level computations, gather, merge, decide and act. Throughout this manuscript, results
will be mainly explored by having in mind the visual system, but are intended to be as generic
as possible.

Dynamics of the primary sensory cortical areas

By focussing on generic models of primary sensory areas, that will be explained more in
detail, we will try to understand and dissect some key mechanisms governing the dynamics
of these neuronal networks. To understand how they can produce computations and encode
information, one need to understand the nature of their activity, and how and why, in return,
activity may shape the structure of the network itself. Organization of sensory cortical areas
is indeed linked to the structure of the stimuli they process. In the visual system, for example,
information is retinotopically organized, and neurons in the primary visual area (V1) are sen-
sitive to the primitives of the visual scene: oriented lines (Hubel and Wiesel, 1959). Simple
cells sharing similar orientation preferences tend, for example to be more interconnected than
others, and the wiring principles establishing those connections are thought to be the result
of the joint activity of the cells. In this manuscript, we will try to study some current views
about the ongoing activity in generic networks. As we will see, even without any external
input, neuronal networks within the brain are constantly active and, unlike in digital computer
science, information processing is performed in the presence of noise and variability. The ro-
bustness of the brain in low level processing tasks is striking when one takes into account this
“noise”, and so is the learning capacity in this stochastic state. The brain’s capacity to produce
reliable and reproducible responses despite its ongoing and fluctuating activity, which will be
developed in Part II, is a challenging and interesting problem. In computer science, comput-
ers are as fault tolerant as possible, because errors in bits exchanged would automatically lead
to errors in algorithms and to bugs. Error correction codes are an efficient way to deal with
reliable transmission of information over unreliable communication channels, but they only
ensure that the transmitted information content is the same. The resting state of a computer
being well defined, if the message is the same, then the output result of the internal algorithm
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will be the same. But how does the brain do this, in the presence of a stochastic resting state ?

Structure of the manuscript

In this thesis I aim to show how the similarity between the statistics of the ongoing and the
evoked activity could be an advantage for the system, from an information transmission point
of view, and how this similarity could be achieved by plasticity in large-scale networks of
integrate-and-fire neurons.

The structure of this thesis is as follows: in the first part, I briefly review and discuss the
basis and the key properties of the models that will be used in all the different sections of the
manuscript. Biophysical models such as neurons or synapses and the key concepts needed
to understand the main results obtained in the manuscript will be developed. In the second
part, I will present a study on the similarities between spontaneous and evoked activity. After
having defined the background of the spontaneous activity in the brain, and how intracellular
recordings can be used to confirm the idea that evoked activity (under external stimulation)
and spontaneous activity share a lot of similarities, I will present a model design to address the
question of information transmission and reliability of the cortical responses in the presence
of this ongoing activity. With the help of large scale simulations and the use of stimulation
patterns with statistics close to those of ongoing activity, I show why asynchronous irregular
networks such as the visual cortex may operate on the edge of a particular dynamical state,
deterministic chaos. This study helps to better understand information propagation in the
presence of ongoing activity (often considered as “noise”), a key element of recurrent net-
works. This particular model, compared to experimental results and which I call the Frozen
Paradigm explains the difference in reliability that can be observed in the responses of neu-
ronal networks facing several distinct stimuli.

In the third part, I present an exhaustive simulation study of two dimensional layered net-
works of integrate-and-fire neurons, in order to better understand what are the key parameters
influencing the dynamical states of the system. How do the correlations between the spiking
activities of pairs of neurons organize according to some key parameters in the model is an
open and interesting, question since correlations in neuronal networks have been shown to be
a crucial part of the code. We will see that macroscopic invariants can be extracted, whatever
the fine details of the connectivity are.

In the fourth part, I tackle the question of unsupervised learning in recurrent neuronal net-
works. What is the state of the art, what are the problems that one needs to solve to obtain
a stable system that can retain memory of its inputs? After having demonstrated the mem-
ory retention problems that can appear when a biological learning rule such as spike timing
dependent plasticity (STDP) is implemented in large scale recurrent networks, even in topo-
graphical networks such as the one analysed in the earlier part of this manuscript, the need for
a new plasticity model will be developed. In order to observe how some particular statistics
can be stored by the networks and may be later replayed in the structure of the ongoing activ-
ity, I study a new rule for synaptic plasticity, based on STDP models but incorporating some
homeostatic constraints in the framework of meta-plasticity. This hypothesis allows a link to
be established between different theoretical schemas of plasticity that will be developed with
the help of some biophysically realistic mechanisms.

Finally, I discuss the heterogeneity of the simulation tools that may be present in compu-
tational neuroscience. Since this is a growing field, without the expertise and the history
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of well-defined topics such a mathematics and theoretical physics, neuronal simulation are
still trying to settle their foundations. By keeping this in mind, one can observe that sim-
ulation are made with software that should be compared and cross-validated in order to be
sure simulations are correct and give reproducible results. To that aim, I will present PyNN,
a meta-language written in Python allowing to write code once, to run it without conversion,
and to compare the results given by various neuronal network simulators.



19

Part I

Materials and Methods

Summary
1 Diving into a cortical network: the biology 18

1.1 Overview of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 The synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Neuronal networks: a canonical structure . . . . . . . . . . . . . . . . . . 20

2 Computational models: the building blocks 23
2.1 Compartmental models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 The Integrate-and-Fire model . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Conductance based synapses . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Mean field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Network activity 26
3.1 Neuronal networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The balanced random network . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Coding in neuronal networks 27
4.1 The quest for the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 An overview of some temporal codes . . . . . . . . . . . . . . . . . . . . . 29



20 DIVING INTO A CORTICAL NETWORK: THE BIOLOGY

1 Diving into a cortical network: the biology

1.1 Overview of a neuron

Neurons are the basis of the nervous system, and the brain is made of' 1012 neurons, forming
a highly connected network of very complex processing units (see Figure 2). Neurons are ex-
citable cells able to create and propagate electrical signals (called spikes or action potentials)
in an all-or-none manner, and this ability lies in a difference of electrical potential between
the intra and extra-cellular media. A neuron is made of a cell body, called the soma, and two
main extensions: the dendritic arbour and the axon (see Figure 4 top). Dendrites receive sig-
nals and information from other neurons, while the axon sends information to other neurons.
The connection between an axon and a dendrite is a synapse, which we will describe later.
Like every cell in a living organism, a neuron is a very complex machine, the details of whose
function are out of the scope of this manuscript. We consider here the neuron only from the
point of view of its transfer function, i.e. how it can convert a stream of electrical inputs into
an output signal.

Figure 2: Hand-made drawings made around 1900 by Ramon y Cajal. Various shapes can
be observed for neurons, reflecting the huge diversity that can be found. Neurons are sorted
according to their shapes, their location in the brain areas, their electrical properties, and so
on.

To have a better insight about this input/output transfer function, we will describe briefly
how and why action potentials (also called spikes) emerge and propagate in neurons. For a
more comprehensive overview, the reader is refered to Kandel et al. (2000). The initiation
and creation of the action potential has been studied in depth in the axon of the giant squid,
in the seminal work of Hodgkin and Huxley (1952), and this stereotyped electrical activity
exchanged by neurons through the synapse is due to the fact that neurons are polarized cells.
At rest, there is a difference of potential between the interior and the exterior of the neuron,
delimited by its membrane and following the Nernst equation. This difference is due to a dif-
ference in ionic concentrations, between the two sides of the membrane, and is approximately
−70mV. The genesis of the action potential is a complex sequence of ionic movements in
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and out the intracellular region, which is possible because the membrane is a lipid bilayer
with many diverse protein assemblages embedded in it, especially ion pumps able to let ions
cross the membrane and to flow against their concentration gradient.

This sequence can be decomposed into three main steps, governed by a particular activation
sequence of voltage-gated ionic channels (see Figure 3). First, as the membrane potential
increases, sodium channels open and are responsible for an sudden influx of sodium in the
neuron which in turn is responsible for an increase of the intracellular potential. This is the
so-called depolarization step. Subsequently, potassium ions are pumped out of the neuron,
and this phenomenon reduces the membrane potential. This is the so called hyper-polarization
phase. Finally, the third phase is a recovery one, where pumps help to return the membrane
potential to its resting state. The whole sequence, i.e. the generation of the action potential,
lasts only a few milliseconds. The electrical impulse, once generated at the axon hillock,
propagates in the axon and influences other neurons through synapses.

Figure 3: Illustration of an action potential. The membrane potential of the neuron increases
from its resting value during a depolarization phase, reaches a peak, and then goes back dur-
ing a hyperpolarization phase before recovering its resting value. This stereotyped and fast
electrical waveform is an action potential.

1.2 The synapse

The synapse is a key element where the axon of a pre-synaptic neuron A connects with the
dendritic arbour of a post-synaptic neuron B (see Figure 4 top). It transmit the electrical influx
emitted by neuron A to B. Every cortical neuron is connected to approximately 104 others, so
the total number of synapses in the human brain is ' 1016. Synapses are crucial in shaping a
network’s structure, and their ability to modify their efficacy according to the activity of the
pre and the post-synaptic neuron is at the origin of synaptic plasticity and memory retention
in neuronal networks: see chapter IV for more details about synaptic plasticity and learning
in neuronal networks. Synapses can be either chemical or electrical, but again, for a more
exhaustive description, the reader should refer to Kandel et al. (2000). To focus only on the
chemical synapses, the only ones that will be considered in the rest of this manuscript, the
pre-synaptic neuron A releases a neurotransmitter into the synaptic cleft which then binds
to receptors located on the surface of the post-synaptic neuron B, embedded in the plasma
membrane. These neurotransmitters are stored in vesicles, regenerated continuously, but a
too strong stimulation of the synapse may lead to a temporary lack of neurotransmitter, or
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to a saturation of the post-synaptic receptors on B. This short-term plasticity phenomenon is
called synaptic adaptation (Tsodyks et al., 2000).

Figure 4: Top: schematic illustration of a synaptic contact between two neurons. The axon
of pre-synaptic neuron A establishes a synapse with a dendrite of post-synaptic neuron B.
Bottom: detail of the synaptic cleft. Neurotransmitters stored in vesicles are liberated when
the pre-synaptic membrane is depolarized, and then docked onto receptors of B

The type of neurotransmitter which is received to the post-synaptic neuron influences its activ-
ity. The synaptic current is cancelled for a given inversion potential: if this inversion potential
is below Vthresh (the voltage threshold for triggering an action potential), the net synaptic ef-
fect inhibits the neuron, and if it is below, it excits the cell. Classical neurotransmitter such
as glutamate leads to a depolarization (i.e. an increase of the membrane potential), and the
synapse is said to be excitatory. In contrast, gamma-aminobutyric acid (GABA) leads to an
hyper-polarization (a decrease of the membrane potential), and the synapse is said to be in-
hibitory. In general, a given neuron produces only one type of neurotransmitter, being either
only excitatory or only inhibitory. This principle is known as the Dale’s principle, and is a
common assumption made in the models of neuronal networks. Nevertheless, neurons in par-
ticular areas may partially contradict this principle (Sulzer and Rayport, 2000), and it has to be
kept in mind that several neurotransmitters exist and impact post-synaptic electrical activity
in different ways.

1.3 Neuronal networks: a canonical structure

Most of the simulations in this manuscript focus on the dynamics of generic cortical networks,
as can be found in primary sensory areas, such as V1: these areas are the first entrance stages
of sensory inputs in the neuronal networks that will integrate and send responses back to the
thalamus. In this classical feed-forward view, where information proceeds in a hierarchical
manner (from area to area), sensory signals are turned, by a transduction mechanism, into
electrical signals projected into the thalamus and sub-cortical structures, before being trans-
mitted to higher and higher cortical areas, with the underlying idea that the further we go in
the cortical areas, the more complex and elaborate is the processing performed on the inputs.
Detecting a particular face moving in a crowd, for example, will be achieved by neurons in
the infero-temporal areas (Desimone et al., 1984), almost at the end of the visual information



1.3 - Neuronal networks: a canonical structure 23

processing flow (in the so called “what” pathway). This task is indeed very complex: it needs
a raw and low level segmentation of the scene (in V1), a more complex detection of movement
(in IT), and a progression along the what pathway in the infero-temporal structures (in V2,
V4, IT) (see Figure 5 Left).

Figure 5: Adapted with permission from Lamme and Roelfsema (2000) and Perrinet (2003).
Left: The visual pathway, with the succession of cortical areas where visual information is
projected. Right: Representation of feedforward (pink), horizontal (yellow), and feedback
(blue) connections to a hypothetical neuron in V4 (red cell).

The integration field of a neuron is composed of the synaptic afferents targeting its dendrites.
Neurons integrate all this information, and emit action potentials if particular spatio-temporal
patterns of activity are present or absent. As one can see in Figure 5 (Right), the integration
fields, or receptive fields, of the neurons are larger and larger as we consider higher areas. Neu-
rons in V1 have receptive fields that allow them to sample only a subpart of the visual scene,
but then, by a cascade and a feed-forward structure, receptive fields in superior areas are more
and more broad and span the whole visual field. This classical feed-forward view will be
challenged in the following, because it has to be stressed that every layer within this straigth-
forward information processing scheme (V1, V2, ....) is a higly inter-connected network of
neurons. Areas are strongly coupled with higher ones sending many feedback connections
to primary sensory cortical areas. For example, the connections from cortico-thalamical pro-
jections originating from V1 are ten times more numerous than the thalamo-cortical ones to
V1.

Apart from this structure in areas, from an anatomical point of view, the neocortex is organized
in columns and in a laminar structure formed with six distinct layers, described and drawn
originally by Ramon y Cajal around 1900, see Figure 2 (for a good review of his work, see the
work of Garcia-Lopez et al. (2010)) and Figure 6 for a schematic view of a cortical column.
The distinction between the layers is based on anatomical observations, neuron types and
densities.

In a cubic millimetre of cortex, the number of neurons is estimated to be ' 100000 (Braiten-
berg and Schüz, 1991, Beaulieu and Colonnier, 1983, Briones et al., 2004), and the probability
of connection between any pair of neurons around ' 10%, depending on the area and on the
species. The functional role of this layered organization is far from being understood, and
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Figure 6: Schematic view of the cortical layers. Layer 4 receives the sensory inputs from
the thalamus. Large pyramidal neurons have their soma in layer 4/5, and a huge dendritic
arborization spawning into superficial layers (2/3). Interneurons (inhibitory cells), are more
local.

a clear picture of this would be a major breakthrough in computational neuroscience. In the
following sections, models are as generic as possible, and except if stated otherwise, they
should be considered as models of layer 4, which is the first layer where sensory informa-
tion is projected from the thalamus. Layer 4 is the entrance gate into the cortex, and, to be
schematic, information is then sent to superficial layers 2/3 before going back to deep layers
5/6 and being sent back to the thalamus. Several hypotheses have been made, trying to link
the columnar organization with functional units and small canonical microcircuits that could
be replicated (Binzegger et al., 2004, Thomson et al., 2002), but none of them dominates. It is
important to understand that the results that are obtained in the following sections are intended
to be generic and easily transposable to other areas and/or cortical structures. The neuronal
networks that are used, even if not biologically plausible according to their structures and
their parameters, aim to capture the key dynamics of randomly or topographically connected
networks of neurons. This target goal seems to be plausible, since all mammals have about
the same density of neurons, and similar layered organization (Jehee and Murre, 2008). This
simple observation is sufficient to think that neuronal networks may perform particular func-
tions, from a computational point of view, that may be captured and understood without the
need of diving too much into the exact details of the anatomy.

The ratio of glial cells to neurons is not constant across species, and some evidence suggests
that it may be related to the wiring structure of the network. The more dense and complex
is the network, the more glial cells are necessary to keep neurons operational, to ensure the
stability of the system. Glial cells will be ignored in the rest of the manuscript, but more
and more studies suggest that they may play an important role in neuronal network dynam-
ics. There are indeed growing evidences that glial cells can influence neuronal activity, and, as
such, may directly participate in information processing in the brain. They respond to external
stimuli (Kelly and Essen, 1974, Schummers et al., 2008), are closely linked with calcium dy-
namics, and their functional role is still debated (Kirchhoff, 2010). An exhaustive description
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of their effects is out of the scope of this manuscript, but it is important to stress that the next
generation of neuronal network models will have to deal more carefully with their dynamics.

2 Computational models: the building blocks

From a computational point of view, neurons are active processing units, collecting and in-
tegrating over space and time along their dendrites the electrical activities incoming from
approximatively 104 other neurons. They may be seen as very complex transistors that will
choose whether to propagate electrical activity according to some key properties of the input
signals that are gathered, turning them either into coincidence detectors in their inputs (either
in space and/or time) or into integrators. As the results of biological processes, they dis-
play a huge variety of types and shapes, and even though in this thesis we will mostly ignore
this aspect, for computational reasons that will be described later, it has to be stressed that
neuronal morphologies by themselves could be important factors in the local computations
performed by neurons: a pyramidal neuron may not be able to do the same calculations as a
Purkinje cell, simply because of the strong differences in their morphologies and biophysical
properties such as channel types and/or density, which constrain their functional responses.

2.1 Compartmental models

If we want to model properly the electrical activity within a single neuron, the situation is al-
ready problematic. When considering one neuron, such as those shown in Figure 2, designing
an exhaustive set of equations that will perfectly describe its activity is not easy. One needs
to model its morphology, and approximate it with what is called a compartmental model: a
succession of small elements, or sections, being a discretization of the continuous structure of
the neuron. In each of these compartments, one can solve differential equations coming from
the discretization of the cable equation (Rall, 1957), and by measuring the appropriate density
of ionic channels within all of them obtain a calculation of the electrical activity within the
discrete approximated neuron. The spike generation mechanism mainly obeys the Hodgkin
and Huxley (1952) system of equations. The system can easily end up with a neuron made
of thousands of compartments, each of them being a computational node where differential
equations should be solved: limits on computational power make it difficult to model a large
assembly of neurons with such a level of precision. This is a computational challenge in it-
self, faced by the Blue Brain project nowadays (Markram, 2006) (to model only 10000 such
neurons requires a 8000 nodes Blue Gene supercomputer). The drawback of this approach
is that the risk of being overwhelmed by parameters is large. The advantage is that they give
insights about active processing and the dendrites (Shepherd et al., 1985). The positions of the
synapses along the dendritic tree and the distribution of ionic channels can shape the neuronal
response of the cell along its dendrites. Moreover, it has been shown that spikes can back-
propagate along the dendritic tree (Frégnac, 1999, Larkum et al., 2001, Nevian et al., 2007),
and influence the input/output transfer function. They may also be linked with plasticity, as
we will see in Part IV.
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2.2 The Integrate-and-Fire model

In contraste to compartmental models, the integrate-and-fire model is a tractable oversimpli-
fication of a neuron. It does not take the structure into account, and turns all the cell into a
single point in space, where one or a set of differential equations are solved. This is a point
process model, and was introduced by Lapicque (1907). Inputs to the neuron are described as
ionic currents flowing through the cell membrane when neurotransmitters are released. Their
sum is seen as a physical time-dependent current I(t) and the membrane is described as an
RC circuit, charged by I(t). When the membrane potential reaches a threshold value Vthresh,
a spike is emitted and the membrane potential is reset (see Figure 7). In its basic form, the
equation of the integrate and fire model is:

τm
dV (t)

dt
=−V (t)+RI(t) (1)

where V is the membrane potential, and R the resistance of the membrane, with τm = RC.

Figure 7: Taken from Abbott (1999) The integrate-and-fire model of Lapicque. (A) The equiv-
alent circuit with membrane capacitance C and membrane resistance R. V is the membrane
potential, Vrest is the resting membrane potential, and I is an injected current. (B) The voltage
trajectory of the model. When V reaches a threshold value, an action potential is generated
and V is reset to a subthreshold value. (C) An integrate-and-fire model neuron driven by a
time varying current. The upper trace is the membrane potential and the bottom trace is the
input current.

In general, the leaky term can be developed and the equation is written as follows, Vrest being
the resting potential of the neuron:

τm
dV (t)

dt
= gleak(Vrest−V (t))+RI(t) (2)

where I(t) is the current input coming from the synapses, and if we model the synaptic inputs
as current injections, this gives:

I(t) = ∑
i

wi ∑
k

syn(t− tk−d j) (3)

where di is the conduction delay from neuron i to the considered neuron, wi the synaptic
weight, and tk the times of the spikes. syn is a function which describes the time course of
the current induced by one synaptic input, which can be modelled as a Dirac delta function, a
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decaying exponential function, or an alpha function. A lot of variations on this integrate-and-
fire model have been made: among those, one can make the threshold not constant (Brette
and Gerstner, 2005), make the internal dynamic more close to the Hudgin-Huxley formalism
(Fitzhugh, 1961), or refine internal dynamics (Izhikevich, 2003).

Capturing in a single point in space the essence of the neuronal dynamics has the big advan-
tage of being much more tractable, on a computational level, and hence allowing large-scale
simulations of hundreds of thousands and up to millions of cells (Ananthanarayanan et al.,
2009, Mehring et al., 2003, Morrison et al., 2007a). Moreover, depending on the variables of
interest, it is important to stress that these point models, even if they represent a huge reduc-
tion of complexity, are not necessarily less accurate than more biological and detailed models.
For example, if one compares the ability of a leaky integrate and fire model with adaptation
and an exponential threshold (Brette and Gerstner, 2005) to predict the spiking responses of
a real neuron receiving a fluctuating current injected in vitro in its soma, the performance is
better than for a full and more complex Hodgkin Huxley model. This is probably because it
has many fewer parameters and therefore is easier to fit. In addition, exploration of the pa-
rameter space has been able to reproduce the huge variety of the firing behaviour observed in
real neuron (Izhikevich, 2003, Naud et al., 2008, Jolivet et al., 2004). Nevertheless, integrate-
and-fire models can not give any insight about dendritic integration and non linear interactions
between voltage gated channels in the membrane.

2.3 Conductance based synapses

A cortical neuron in an active network receives a massive synaptic bombardment. As ex-
plained in the previous section, this neuronal input is commonly approximated as a fluctu-
ating current I(t) but synaptic drives are better modelled by fluctuating conductances: the
amplitudes of the post synaptic potentials (PSP) evoked by neurotransmitter release from pre-
synaptic neuron depend on the post-synaptic depolarization level. A lot of study focuses
now on this integrate-and-fire model with conductance-based synapses (Destexhe et al., 2001,
Tiesinga et al., 2000, Cessac and Viéville, 2008, Vogels and Abbott, 2005). The equation of
the membrane potential dynamic is then:

τm
dV (t)

dt
= (Vrest−V (t))+gexc(t)(Eexc−V (t))+ginh(t)(Einh−V (t)) (4)

When Vm reaches the spiking threshold Vthresh, a spike is generated and the membrane poten-
tial is held at the resting potential for a refractory period of duration τref. Synaptic connections
are modelled as conductance changes: when a spike is emitted g→ g+ δg followed by ex-
ponential decay with time constants τexc and τinh for excitatory and inhibitory post-synaptic
potentials, respectively. The shape of the PSP may not be exponential. Other shapes for the
PSP can be used, such as alpha synapses (t/τsyn)exp(1− t/τsyn), or double shaped exponen-
tials synapses (1/(τ1

syn− τ2
syn))(exp(−t/τ1

syn)− exp(−t/τ2
syn)). Eexc and Einh are the reversal

potentials for excitation and inhibition.

The conductance-based model offers richer dynamics than the current-based one, being also
more biologically realistic. The only problem is that analytical analyse are more complex,
because the transfer function from inputs to output rate is more complicated. More and more
analytical studies have tried to capture the non-linear properties of such conductance models
(Burkitt et al., 2003, Kovacic et al., 2009, Cessac and Viéville, 2008). In contrast to current-
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based networks, neuronal networks with conductance-based synapses are able to display self-
sustained activity, without the need for external noise (Vogels and Abbott, 2005, Marre et al.,
2009b). Initial bumps of activity can reverberate and be sustained by the network, while this is
not the case with current-based synapses. Moreover, synaptic bombardment in vivo can lead
to four-fold conductance increases as compared to the quiescent case. Such an increase can
have dramatic effects on the integrative properties of the neuron - effects that are neglected in
current-based models.

2.4 Mean field models

While the integrate-and-fire and compartmental models consider that the exact times of spike
occurrence are important and may play a role in the coding strategies used in the cortex,
other models consider that the pertinent information is in the instantaneous firing rate of the
neuron. Since the discharge of the cell can be noisy and irregular (see Part II), the spikes
are not modelled and the only relevant information used by those models is the firing rate of
the neuron. At each time, the neuron can emit spikes with a certain probability r(t), directly
related to the activities ri(t) of its pre-synaptic sources, weighted by some factors wi:

dr(t)
dt

= ∑
i

wi f (ri(t)) (5)

where f is a positive, monotonic and increasing function, inducing a non linear relationship
between the summed inputs and the instantaneous firing rate r(t). Usually, f is a sigmoidal or
a hyperbolic tangent function. An alternative viewpoint is to say that r represent the average
firing rate over a population of identical neurons, rather than an instantaneous frequency, and
that is why these equations are called mean-field or rate-based models. Solid mathematical
results can be obtained with these mean field models, concerning either their dynamics or
their learning properties. Some of these results will be mentioned in the following parts, even
though the main model used in this manuscript will be the integrate-and-fire.

3 Network activity

3.1 Neuronal networks

When we have a satisfactory model one neuron, capturing its non-linear dynamics with ei-
ther an integrate-and-fire or a mean field model, we can think about modelling a network of
neurons. By connecting them with synapses, network models are a powerful tool to under-
stand brain dynamics and the origin of the electrical activity observed in vivo. The type of the
neuron models used and the connectivity scheme influence the kind of dynamics that can be
observed: in the following, we will focus mainly on recurrent networks of integrate and fire
neurons. Among alternatives approaches, networks of binary neurons are easier to analyse
analytically (van Vreeswijk and Sompolinsky, 1996, 1998, Sompolinsky et al., 1988). Those
models treat the neuron like the spin of an elementary particle, its activity being a binary vari-
able (spiking or silent), and established a link between theoretical physic and neuroscience.
Models such as the Ising model (Schneidman et al., 2006, Marre et al., 2009a) are used to
infer correlations and structure of the neuronal code. Behind all these models, the key point is
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to explain the irregularity of the neuronal discharges observed in vivo. To explain it without
stochastic inputs, one needs to have large fluctuations of the neuronal dynamics, counter-
balanced by weak synaptic weights and by the fact that the activity should be balanced: an
excitatory and and inhibitory population should act such that the average activity stays below
a certain threshold, while fluctuations may be high and let the neurons cross a threshold, in
order to emit spikes.

3.2 The balanced random network

The balanced random network (van Vreeswijk and Sompolinsky, 1996, 1998, Brunel, 2000,
Vogels et al., 2005, Kumar et al., 2008b, El Boustani and Destexhe, 2009b, Amit and Brunel,
1997, Renart et al., 2010) is a common and convenient framework for studying the dynam-
ics of large-scale populations of sparsely-connected integrate-and-fire neurons. In these net-
works, two generic populations of excitatory and inhibitory neurons are reciprocally coupled
with weights Je and Ji (see Figure 8) to generate a balanced regime where the average depolar-
ization of the neurons is roughly constant, subthreshold, and irregular spiking is the result of
fluctuations. There is a classical ratio of 4 excitatory neurons for 1 inhibitory neurons, based
on the measured ratio in cortex (Braitenberg and Schüz, 1991) and a sparse, random connec-
tivity. Every neuron is typically connected to 1−10% of the others, and depending on certain
key parameters, mainly the amount of external noise injected into the system and the balance
between excitatory and inhibitory weights, several regimes of activity can be observed. Those
regime have been described and classified in Brunel (2000), and can be asynchronous/syn-
chronous (from a population viewpoint) and regular/irregular (from a neuron viewpoint) (see
raster plots in Figure 9).

Figure 8: Schema of a balanced random network. Two populations, one excitatory and one
inhibitory, are reciprocally coupled with excitatory and inhibitory weights Je and Ji, receiving
extra noise with weight Jext.

The average firing rate of all the neurons within the network can be constant (asynchronous)
or display oscillations (synchronous). The individual discharge of one neuron can be regular
(the inter spike intervals (ISIs) are almost all equal), or irregular (the ISIs follow a Poisson
distribution). This irregularity is often quantified by the coefficient of variation (CV), given by
CV = ISI

σ(ISI) where denotes the average and σ the standard deviation. A pure Poisson process
has a CV equal to 1. The more the discharge is regular, the more the CV tends to 0. Clas-
sical values observed in vivo in the spontaneous regime are usually close to 1 (Nawrot et al.,
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Figure 9: The main activity regimes observed in neuronal networks. Top Left: Synchronous
regular (SR): the global activity of the network is oscillatory, and all the neurons fire regu-
larly at intervals of their refractory period. Top Right: Synchronous irregular (SI): the global
activity is oscillatory, but neurons fire irregularly as Poisson-like sources. Bottom Left: Asyn-
chronous regular (AR), the global activity is constant, but neurons fire regularly. Bottom Left:
Asynchronous irregular (AI), both the individual discharges of the neurons and the global
firing rate are irregular. Adapted from Brunel (2000)

2008), so simulations tend to focus on the irregular regime. In such a regime, neurons fire in
an irregular manner, behaving almost like Poisson processes, and the average pairwise cross-
correlation is modulated by the internal balance or the external input. This regime is also well
suited to produce slow oscillations comparable with oscillations observed in vivo under anaes-
thesia (Han et al., 2008, Arieli et al., 1996). A full numerical study of these dynamics will be
the subject of Part III. Mean field models are a common tool used to establish and predict,
analytically, the stationary average response of homogeneous networks of integrate-and-fire
neurons under certain assumptions (neuronal discharges should be independent and Poisso-
nian, in the irregular regime) (El Boustani and Destexhe, 2009b, Brunel, 2000). However, they
are much harder to use when complex models of neurons are used, or when inhomogeneities,
such as delays, are taken into account.

4 Coding in neuronal networks

4.1 The quest for the code

The question of how information is encoded in primary sensory cortical areas is a fundamental
one in computational neuroscience. Based on the assumption that the information content is
contained in the spiking activity of the neurons, several coding schemes are debated. On the
two opposite sides of a wide field, one can consider information as being either rate coded,
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meaning that the exact times of the action potentials are not the relevant information, but that
information content is encoded in the average discharge of the cell across time, or time coded,
meaning that information is precisely encoded in the exact spike times of the neuron. Both
schemes have pros and cons, and it may be that the brain uses one or the other depending on
the context or on the sensory area which is considered (Shadlen and Newsome, 1998, Mehta
et al., 2002).

If we consider the rate code, this coding scheme is known to be present in sensorimotor ar-
eas, where population vectors have been shown to be a very good estimate of the direction of
movement (Georgopoulos et al., 1986). Individual motor neurons are poorly tuned and their
individual firing patterns contain only little information about the direction and velocity of
limb movements, but when their activities are summed and averaged, precise predictions and
estimations can be achieved, as if the brain was integrating the relevant information over a
population of cells. With such a code, rate-based models are good candidates for understand-
ing the generic properties of the code. The brain can use Bayesian framework to encode/de-
code information, average over time and/or populations to gain a robust estimate of ongoing
processing in a cortical network. The drawback of this rate-based scheme, is that to have reli-
able and accurate estimates of the firing rates, one need to integrate information over a certain
time window, certain population size: since firing rates can be rather low, even in vivo, and
since neurons are limited in their frequency of discharge (' 200 Hz) by the refractory period,
rate-based coding needs receptive fields of neurons to be rather large and information coded
in a redundant manner by a large number of cells.

A more recent theory is that information is precisely encoded in the relative spike times of
neurons (Gray et al., 1989). This theory has the advantage of circumventing the problem of the
time and/or population integration needed by rate-based codes, and several observations are
in line with the idea that codes where the spike times do not play any role may be wrong. For
a good review on the evidences and the advantages of time codes, one can refer to (Tiesinga
et al., 2008). Several theories have been built on this idea, and the time-coding framework has
led to successful approaches such as latency coding (Thorpe et al., 1996, Butts et al., 2007),
synchrony coding (Singer and Gray, 1995), synfire chains (Abeles, 1991), and phase coding in
subcortical structures such as the hippocampus (O’Keefe and Recce, 1993). The time-based
codes are built on the fact that precise temporal correlations exist between neurons (Abeles
et al., 1994), and that they could be the signature of precise interactions valuable for the
system. Since neurons spatially and temporally integrate synaptic inputs, the co-activation,
either in space or in time, of a pre-synaptic group of neurons will more reliably drive the post-
synaptic one, and propagate information. Simulations and experiments show that synchrony
arises naturally in a classical multi-layered feed-forward network of spiking neurons, even
when stimulated by uncorrelated inputs (Reyes, 2003). Nevertheless, as for rate coding, time
coding suffers from several limitations. First, if exact times are important for the system, then
the system must be very robust and insensitive to noise. A response, given twice to the same
stimuli, should be twice the same, whatever the state of the brain, and neuronal integration
should be reliable. As we will see in the following, the extent to which this is true is not clear
from experimental data, and the subject is an ongoing debate (Jacobs et al., 2009). Moreover,
in the case of the latency coding, when information is encoded as time differences between
spikes, one needs to know what is the “first” spike, and if relative or absolute time differences
should be considered. This raises the question of a clock, and could be partially solved by
linking the spike discharges to general oscillations/rhythms of the background, such as in
hippocampal structures. In addition, the robustness of the code should also be questioned.
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What happens if one neuron does not? Spike codes require reliable responses, and raise the
concern of reproducibility, from a trial to trial basis, in the responses. To explore these time
codes, the integrate-and-fires neurons are essential, and the rest of this manuscript, based
on large scale simulations with such neurons, will focus on these codes. More precisely, to
understand temporal codes, and to understand how they can work with the ongoing activity
of the brain, one needs to understand how correlations between spiking activities emerge in
recurrent networks, since it is well known that correlations are a crucial component of the
neuronal assembly code (Singer and Gray, 1995, Nirenberg and Latham, 2003) also linked to
behaviour (Zohary et al., 1994).

Among the temporal schemes that have been proposed, we will review more in depth the syn-
chrony theory and the synfire chain theory. They both rely on the idea that correlations among
neurons carry information about the stimulus. Formally, this means that the mutual informa-
tion between the stimulus s and the responses r1, r2 of two neurons Imut(r1,r2,s) is higher
than Iindep

mut (r1,r2,s), the mutual information when assuming that P(r1,r2|s) = P(r1|s)P(r2|s).
Note that this issue differs from the issue of the temporal structure of the activity. Here we are
interested in the link between the structure of the neural code and the stimulus.

4.2 An overview of some temporal codes

Synchrony The synchrony theory relies on correlations and was first proposed by von der
Malsburg (1995) to solve the binding problem. Binding is the fusion, by the brain, of different
pieces of local information into a single and coherent higher-order percept. In the visual
system, binding helps for example to see not only a group of independent lines close by,
but shapes and contour lines that will be interpreted, in higher areas, as particular geometric
shapes. In this coding scheme hypothesis, information is encoded by synchronous assemblies
of neurons that are co-active. This co-activation has several advantages. First, this avoids the
problem of having one neuron coding for each particular feature. If we take for example a
visual scene, one can consider that a dedicated neuron can code for a cube, one for a triangle,
and so on. We could have as many neuron as shapes, and this hypothesis is often referred to
as the grand-mother or pontifical cell concept established by Barlow (1972). In the literature
we can also find the term pontifical or grandmother neuron: you may have, somewhere deep
in your associative areas, one neuron coding for your grandmother, and firing only when
something related to her appears as a stimuli. Evidence for such cells is sparse (Quiroga et al.,
2005), and this is not computationally tractable, because having one neuron per concept leads
to a combinatorial problem. To avoid this, one can say than a shape is the co-activation of
some neurons within a synchronous assembly. For example, four neurons coding for four lines
would encode the concept of a square. The theory has been widely debated, and its opponents
have raised the argument that synchronous assemblies are not a way to solve the binding
problem by themselves, since they do not compute the binding, they just signal it. Many
theoretical criticisms therefore focus on the way the synchrony can be detected (Shadlen and
Movshon, 1999). In particular, it might not be easy to detect synchronous assemblies among
the irregular activity of cortical networks, where the sustained firing rate of all the neurons
makes synchronous assemblies emerge by chance. However, recent work has shown that
the detection of synchronous assemblies can be done with realistic mechanisms (Shamir and
Sompolinsky, 2004, Gütig and Sompolinsky, 2006). The experimental evidence behind the
synchrony theory has also been widely discussed, and is still controversial.
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Synfire chains Synfire chains can be seen as an extension of the synchrony theory to delayed
correlations. Why should only synchronous correlations be considered, when it is known that
correlations with delay can also be detected by post-synaptic neurons, provided that the de-
lay in the correlation is compensated for by different conduction delays. The synfire chain
theory proposed that the stimulus, decision or actions could be encoded in particular and pre-
cise spiking patterns, rather than in the firing rate. This idea is close to the idea of neuronal
assemblies originally proposed by Hebb (1949), and is also sometimes referred to “cortical
songs”, even if slight differences between the two concepts exist. Synfire chains occur as a
response to a stimulus, and within a relatively short time scale (a few hundred milliseconds),
while cortical songs are more general and could last over longer time scales (up to seconds). A
synfire chain is precisely defined by a travelling packet of synchronous spiking events across
the cortical network. This would be the signature of an assembly which codes for a particular
feature, or action. The feasibility of the propagation of synfire chains in cortical networks
has been shown for feed-forward network models (Diesmann et al., 1999), and has been dis-
cussed in recurrent network models (Kumar et al., 2008a). It has been shown experimentally
by Vaadia et al. (1995) that the correlations between neuron, in the frontal cortex of monkeys
performing a behavioural task are dynamically modulated with time, and that this modulation
can be linked to behavioural events. The authors proposed that this fast modulation is due
to the selective emergence of spiking patterns in the cortex, each of them being associated
with a behavioural event. More recently, Ikegaya et al. (2004) demonstrated the reactivation
of some particular patterns in the ongoing activity, that may be interpreted as synfire chains.
Nevertheless, there are several criticisms of the synfire chain theory, mainly focusing on the
methods used to demonstrate their existence (Mokeichev et al., 2007). Establishing the sig-
nificant occurrence of a given pattern is difficult to assess with finite-size recordings and a
restricted number of electrodes. Several studies have shown that at least part of the results
which are used to demonstrate significant pattern occurrences could result from stochastic
activity (Oram et al., 1999), but careful examinations of the statistics show the presence of
higher order correlations in the activity.

Putting all these results together, the existence of correlation based codes, whether synchrony
or synfire chains, is still a matter of debate. If correlation codes are acting in cortical areas,
the demonstration of their existence is hampered by two limitations. First, the distributed
nature of these codes makes them difficult to demonstrate without a large number of simul-
taneous recordings, and their significance may increase with the number of recorded neurons
(see Schneidman et al. (2006) for an example of correlations appearing at larger scales). Con-
versely, this may be an explanation of why a neural code based on mean firing rate seems
to prevail with single cell recording techniques. Furthermore, even if correlation codes exist,
they may appear clearly only in complex behavioural tasks. Intuitively, we could say that,
when faced with a task of low complexity, the cortex is not required to use its full computa-
tional capacity, and will use only mean firing rates. There is an interesting piece of evidence
for this is the olfactory system, where abolishing synchrony through suppressing lateral inhi-
bition has no effect on the discrimination of dissimilar odours (easy task), but severely impairs
discrimination of similar odours (hard task) (Yokoi et al., 1995).
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5 Introduction

Close your eyes, cover your ears, and do not touch anything. Even without any active affer-
ent stimuli coming to the sensory areas, the brain is known to display a spontaneous activity
whose nature and origin is still a matter of debate. Whatever the time is, your brain is con-
stantly active and millions of neurons are emitting action potentials every millisecond. If not,
this is a clear clinical sign that you are dead. This spontaneous activity, also called ongoing
activity, is by definition the running activity of the brain when not “facing” or processing par-
ticular stimuli. This is somehow the resting state of the brain, when no particular or at least
no known actions are performed. The nature of this activity is correlated with behavioural
states, being different during awake states and sleep. Its nature can be captured at different
scales, depending on the device used to record it. For example with electro-or magneto en-
cephalography (EEG or MEG), the frequency content of large scale brain electrical activity
can be used to asses and characterize different cortical states of activity. It is usually divided
into frequency bands (see Table 1): α rhythm, with frequencies around 8-12 Hz, can be seen
as an awake resting state, when eyes are closed. β rhythm (10-30 Hz) is a kind of normal
working state. γ oscillations, at more than 30 Hz appear during cross-modal tasks, active and
intense concentration and memory tasks (in addition to slow oscillations observed in the EEG
signal, such as δ (<4Hz) and θ (4-10 Hz)).

Name Frequency range
δ 1-4 Hz
θ 4-10 Hz
α 8-12 Hz
β 10-30 Hz
γ 30-80 Hz

Table 1: Table of the different frequency ranges often mentioned in the literature. Note that
the precise borders of these ranges are often modulated from one study to the other.

The exact nature of those oscillations is irrelevant for the rest of the manuscript, and this enu-
meration was just intended to underline and stress the fact that ongoing activity is constantly
present in the brain. The naive vision of a brain waiting for a particular stimulus needs to be
challenged to achieve a major breakthrough in computational neuroscience. What is the nature
of this ongoing activity, how does it affect, shape and filter the incoming sensory streams?

The ongoing activity is a major difference between biological systems and silicon ones. In
modern computers, transistor properties are calibrated and designed such that performing
twice the same operations will give twice exactly the same results. Variability, noise and
fluctuations are enemies of reproducibility so that error correction codes, controlled design
and other solutions are used to be sure that the output of the system is deterministically linked
to its input. This uncorrelated and residual activity is often considered as “noise” in experi-
mental protocols, that needs to be eliminated by averaging over many trials to obtain a clear
evoked response to a particular stimulus. This averaging, if possible in a well designed and
controlled setup where the exact same stimulus can be presented several times to the system, is
far from what the brain is used to dealing with. This “noise” is an intrinsic property the system
is, at the best able to cope with, perhaps able to exploit. This intriguing capacity will be the
subject of this Part. Since variability in vivo is the result of the recurrent interactions between
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neurons and since neurons are reliable when receiving a fluctuating input current (Mainen and
Sejnowski, 1995), the statistical structure of the noise may be less random than expected and
directly linked to the underlying topology of the network. Its particular structure can even
play a role in information transmission and signal processing, and this is the question that will
be tackled in this Part. After having discussed the origin and the nature of the spontaneous
activity in neuronal networks, results obtained with large scale models of integrate and fire
neurons are presented to show how recurrent interactions can interact with an incoming signal
to provide a new conceptual framework for information transmission.

6 The spontaneous activity

6.1 Origin of the ongoing activity

The origin of this spontaneous activity in the cortex is far from being clearly understood.
Isolated neurons by themselves seem to have some homeostatic processes making them able
to be spontaneously active, even if no incoming activity is present. This phenomenon has also
been reported in cortical neurons (Llinás et al., 1991, Mazzoni et al., 2007), either taken in
vitro brain slices (Timofeev et al., 2000) or in cultures (Gross et al., 1982). Such activity, once
created, can easily reverberate and be amplified in the microcircuits made by the neuronal
connections, and lead to a self-sustained activity regime. How long this ongoing activity
will last depends on the preparation, on the size of the network, and some other unknown
parameters. Plasticity, the fact that the efficacy transmission of the synapses is not constant
over time, the fact that neurons may be dying during the time of the in vitro preparation:
all affect this activity, and progressively silence the network. Nevertheless, even an isolated
brain (Andjus et al., 1967) displays such a spontaneous activity, i.e. the brain does not require
external inputs to generate its own recurrent activity.

To focus on the sensory systems in vivo, the origins of ongoing activity are already found
in the transduction layers, where the external world is transformed into electrical activities
that are relayed to the cortex. It is the case for example in the auditory cortex (Tritsch et al.,
2007), and also in the visual system: the retina generates a spontaneous activity, even in
dark conditions, of approximatively 5 to 30 Hz (Wong et al., 1998). During its development,
travelling waves of activity spontaneously pop up and propagate, being integrated by bipolar
and amacrine cells in the retina before being sent to the lateral geniculate nucleus (LGN) of
the thalamus, and then to V1 in the cortex. Noise in the sensors is then constantly impacting
the activity of the neurons downstream. The resting state of the brain is then an active one, and
relevant information need to be extracted from these continuous and ongoing flows of sensory
inputs. To illustrate this, one can look at recent data from techniques that allow to record
more and more accurately the detailed and exact ongoing activity in awake animals. While
this can be done intra-cellularly, at the single neuron level (Lee et al., 2006) and revealed
by inverting inhibitory events when recording with KCL electrodes (Figure 3B in Bringuier
et al. (1997)), the ongoing activity is much easier to observe at the population level, with
multi-electrode arrays. In Figure 10, taken from the work of Lin et al. (2006), one can see
the spiking activity in an awake mouse, and the subtle difference when the animal receives a
clear external stimulation (red line). More than 200 neurons are recorded in parallel with a
multi-electrode array. Understanding how pertinent information is extracted from this ongoing
activity is a crucial step.
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Figure 10: Extracted from Lin et al. (2006). Left: spontaneous spiking activity, as a raster
plot, for 200 neurons recorded in awake behaving mouse. Stimulation time (a puff of air is
made on the leg of the animal) is indicated by a red line. Right: picture of the device.

6.2 Nature and structure in vivo

The exact nature of the spontaneous activity is hard to capture, for several reasons. The first
one is that the dynamical nature of this resting state is not that clear, and the question of its
stationarity remains open. Imaging tools available nowadays (from intracellular recordings to
local field potentials (LFP), voltage-sensitive dyes (VSD), two-photons) can give an insight
about its nature, but not a full and exhaustive view of the electrical activity over large portions
of the brain. However, we will try here to summarize the principal characteristics of this
ongoing activity, and the main observations that can made on its dynamics.

Age, wakefulness and anaesthetic dependence First, the statistics of this spontaneous ac-
tivity recorded in vivo depend on the age and the state of the animal. Most of the in vivo data
that have been acquired in experiments over the past 50 years have came from anaesthetized
animals, and the brain activity is far more oscillatory than what is nowadays reported in awake
animals. It has also been acquired in various species, and across different ages. As one can
see in Figure 12 (below), ongoing activity in the visual cortex of the ferret at three distinct
stages of development is different: neuronal networks are shaped extra-utero during devel-
opment by electrical activity (Spitzer, 2006, Katz and Shatz, 1996). But even if we record
spontaneous activity in a “stable” and mature network, anaesthetics are known to perturb the
balance between excitation and inhibition (Winters, 1976), leading to pathological activity
that may be sometimes far from the awake regime. More and more efforts are devoted to
developing awake recordings that will be as precise and controlled as in the anaesthetized
context (Lin et al., 2006, Ferezou et al., 2006, Greenberg et al., 2008), to draw a better picture
of the brain’s activity. Recent techniques allowing the recording of precise neuronal activity
over a large cortical surface are multi-electrode arrays and voltage sensitive dyes (VSD), but
in both cases there is a trade-off between spatial and temporal resolutions and having a clear
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snapshot of the instantaneous dynamics in a particular volume of the cortex is not yet feasi-
ble. An observation that can be made from these awake recordings is that while activity in
the anaesthetized regime may be oscillatory and synchronous, activity in the awake regime is
far more irregular and asynchronous. Ongoing activity is also rather sparse and neurons fire
spontaneously at relatively low firing rates. Again the situation varies as a function of the age,
the area, the species, and is used the anaesthetic, but in freely moving awake rats, sparse activ-
ity was observed intra-cellularly (Lee et al., 2006). An exhaustive review of anaesthesia and
age effects is out of the scope of this manuscript: its aim is more to demonstrate to the reader
that ongoing activity, if clearly observed, has a complex nature which is hard to capture.

Slow oscillations In spontaneous activity under anaesthesia, slow oscillations observed (in
the EEG but also in the membrane potential of individual neurons (Steriade et al., 1993a,b))
have been considered as reflecting a switch between “up” and “down” states. In the membrane
potential trace recorded in vivo, one observes some silent periods, where the membrane stays
close to its resting potential (“down” state), and some very active periods where the mem-
brane is strongly depolarized and the neuron sustains a strong irregular spiking activity (“up”
state). The similarity of structure between the “up” and the awake state, observed at the intra-
cellular level and at the local EEG level, has led some to consider “up” states as “fragments
of wakefulness” (Destexhe et al., 2007), and to link it with ongoing activity in awake regime.
Under different anaesthesia, with the notable exception of barbiturate, Steriade et al. (1993b)
reported in vivo similar slow oscillations (the most striking binary switch between two states
is obtained is with ketamine-xylazine Steriade et al. (1993a), and this anaesthesia triggers an
artificially high level of synchrony (Amzica and Steriade, 1995)). Dual recordings in the cor-
tex and in thalamo-cortical neurons reveal that these oscillations are synchronized between
thalamus and cortex, but only over small time windows (Contreras and Steriade, 1995).

Irregularity of the ongoing activity Oscillatory or not, it has been observed that the spiking
activity of neurons in vivo is rather sparse and highly irregular. Most V1 neurons for example
display Poissonian or supra-Poisson spike count variability in response to low dimensional
stimuli such as bars and gratings (Dean, 1981). This and other experimental data are in favour
of the synchronous or asynchronous irregular regimes explained in Part I: neurons fire as
Poisson sources, irregularly, with a coefficient of variation for their inter-spike intervals close
to 1 (Nawrot et al., 2008). The origin of this irregular activity observed in the sub-threshold
voltage and/or in spiking activity is linked to synaptic activity. To check that is is not the
result of stochastic opening of intrinsic channels, Pare et al. (1998) injected and anaesthetic,
the tretrodoxin (TTX), in vivo, which drastically reduced the synaptic activity. This provides
a direct demonstration of the synaptic origin of the background activity. Later computational
studies estimated that voltage gated channels contribute less than 10% of the background ac-
tivity (Destexhe and Paré, 1999). To illustrate the irregularity, Figure 11 shows the membrane
potential of a cat V1 neuron in absence of stimulation (data taken from Frégnac’s lab). As
we can see, the cell is spontaneously firing action potentials, and its membrane potential is
fluctuating, as indirect evidence of the synaptic bombardment received by the neuron.

Ongoing activity and chaos Such an irregular and ongoing activity has led several authors
to raise the question of whether it is chaotic, and several studies stress the hypothesis that the
dynamical properties of ongoing activity are close to those of a chaotic system (Faure and
Korn, 2001, Korn and Faure, 2003, El Boustani and Destexhe, 2009a, London et al., 2010).
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Figure 11: Intracellular recording of the membrane potential of a cat V1 neuron in sponta-
neous activity, under anesthesia. Internal lab data. The irregularity of the discharge can be
observed, and the small fluctuations of the membrane potential reflect the ongoing synaptic
bombardment.

Chaotic dynamical systems exhibit behaviours in which two slightly different initial condi-
tions can lead to two very distinct evolutions of the system, leading to two distinct trajectories
diverging exponentially. This is the so-called “butterfly effect”: even the change of the ac-
tivity in one neuron can drastically impact all the remaining dynamics. The sensitivity of the
ongoing activity to initial conditions is hard to control, and therefore the Lyapunov exponents
of the brain as a chaotic dynamical system are hard to estimate. In the cortex, the influence of
one particular spike on the evolution of the dynamics is not understood, but in vivo interest-
ing experiments have been performed to show that injection of an electrical pulse in a single
neuron of the thalamus can drastically affect and change the dynamical state of the cortex (Li
et al., 2009).

Combined with other results from broadband recordings, such as EEG, there is therefore ac-
cumulating evidence that ongoing activity in the brain is chaotic, or close to a chaotic state.
They transition between order and chaos is call the edge of chaos, and the brain may operate
close to a transition point (Bertschinger and Natschlager, 2004, Kitzbichler et al., 2009). The
so-called balanced random network framework, developed in Part I, where neurons are ran-
domly and sparsely connected, provides a good model for understanding neuronal properties
in such regimes: with such a system in the AI regime, the response to a given input might
not be reproducible (Banerjee et al., 2008), and it is therefore important to understand how
reliability and reproducibility of neuronal responses can emerge in this context. This question
has been partially addressed by several theoretical works. First, the averaged response of a
network of binary neuron model to a uniform stimulation was shown to answer to the stimula-
tion reliably and in a very fast manner, with a time constant below the time constant of a single
neuron (van Vreeswijk and Sompolinsky (1996, 1998), see also Gerstner (2000) for the same
property in networks of integrate-and-fire neurons). The response amplitude increases lin-
early with the stimulation strength. However, this concerns only the “macroscopic” response:
the information is extracted by averaging over the whole population. Secondly, some work
studied Lyapunov exponents of pulse-coupled network of oscillators neurons, in response to
a common fluctuating noise injected into all the cells (Teramae and Fukai, 2008): when the
ratio between the coupling strength and the variance of the external inputs is high enough, the
system can be reliable.
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7 Similarity between evoked and ongoing activity

7.1 Evidence from the literature

Single cell level At the level of the cortical area, the structure of the ongoing activity seems
to contain correlations. A striking example is the work of Lampl et al. (1999): recording
pairs of cells intra-cellularly in the cat primary visual cortex, they showed that the correlation
between the membrane potentials of the cells is high during spontaneous activity. In another
work, Lampl and colleagues, this time in the rat cortex, showed that excitation and inhibition
impinging upon a cortical cell are also very synchronised (or phase-locked with a delay of
a few milliseconds), during both spontaneous and evoked activity (Okun and Lampl, 2008).
In the visual system, other groups of cells are particularly strongly correlated. Several works
have shown that the correlations between cells sharing similar orientation preference is higher
than for the others, by using multiple extracellular recordings (Ts’o et al., 1986, Nelson et al.,
1992). This structure of ongoing activity has been also studied by Tsodyks et al. (1999), using
imaging in the deeply anaesthetized cat with voltage sensitive dyes (VSD). They showed
that the ongoing activity in the cat visual cortex measured with this technique has a spatial
structure similar to that evoked by a drifting grating presented to the animal. To obtain this
result, they recorded the activity of a cell extracellularly simultaneously with the VSD activity
map. The spike trigger average (STA) of the VSD map based on the single cell activity gives
similar maps for both preferred evoked and ongoing activities, which means that triggering
the VSD acquisition on spontaneous spikes reveals the orientation map domain to which the
cell belongs to. In auditory cortex, similar results were found by Luczak et al. (2009).

Network level To illustrate the similarity between evoked and ongoing activity at a larger
scale, Figure 12 shows some results from Fiser et al. (2004). Ongoing activity is recorded with
a single row multi-electrode array (MEA) in the visual cortex of awake ferrets, at three distinct
periods of the development (three different ages), and each time in three different conditions:
when the animal is in the dark, watching dense noise, or watching a natural movie. The key
point of this is the similarity, at the spiking level, between the three distinct conditions. This
can be also observed in the similarity between the temporal correlation functions computed
for the three stimulus conditions. From an external point of view, it is hard to tell when the
system is processing an input or not. Activity is rather constant from dark to the natural
scene, and even if the spatio-temporal profile of the spiking correlations is affected, it is not
drastically different.

Evidence gathered with spike-triggered LFP or multi-electrode arrays (MEA) (Nauhaus et al.,
2009, Smith and Kohn, 2008) confirms largely inferences made from the spatio-temporal
study of synaptic echoes by Bringuier et al. (1999) and reveals that correlations spread in
space and in time: due to the local connectivity of the brain (Hellwig, 2000), spikes can
trigger waves that pop up and propagate in the ongoing activity, creating correlated activity
in the recurrent networks (Swadlow and Alonso, 2009). These waves are also triggered by
evoked stimulations, spreading over several cortical areas, as can be observed in many VSD
imaging studies (Han et al., 2008, Contreras, 2007, Mohajerani et al., 2010). The waves can
be bottom up and go from primary sensory areas to higher areas, but evidence for lateral
horizontal connections (Bringuier et al., 1999) or top to bottom feedback needs also to be
taken into account (Roland et al., 2006). The similarity between ongoing and evoked activity
in visual cortex can be observed at such a network scale (Arieli et al., 1996, Kenet et al., 2003,
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Figure 12: Extracted from Fiser et al. (2004). a) Time series plots of neural activity recorded
under three interleaved stimulus conditions at three different ages. The time series graphs were
obtained from a single animal in each age group. At each age, visual stimulation modulates
the spatio-temporal pattern of spontaneous activity, but does not significantly alter its basic
correlation structure. Bin width, 20 ms. b) Temporal correlation functions computed for the
three stimulus conditions. Thin horizontal lines show plots of correlation functions computed
at each age for each condition using randomly shuffled binned spikes. Random temporal
shuffling of spike trains abolished all correlations in all three age groups, demonstrating that
the observed shifts in correlated activity were not simply a result of the developmental increase
in cell firing rates. Bin width, 20 ms. Error bars represent s.e.m.

Han et al., 2008), but also with two-photons imaging at a smaller scale (Greenberg et al.,
2008).

7.2 Main results

In a collaborative study, myself and several colleagues showed intra-cellularly how the simi-
larity between evoked and ongoing activity can be assessed in vivo by considering the power
spectra of the membrane potential traces (after adequate filtering from the spikes). The mem-
brane potential of a neuron reflects the combined impact of the ongoing synaptic bombard-
ment it is subject to, and therefore could be used to asses the state of this incoming activity.
A novel analysis, based on the frequency content of recorded membrane potentials, during
evoked or ongoing activity, can provide direct evidence that the average amount of correla-
tions during both states is similar. This study was published in the following article. My
contributions to this study were mainly achieved on the simulation part and on the in computo



42 SIMILARITY BETWEEN EVOKED AND ONGOING ACTIVITY

results.
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Abstract

Various types of neural-based signals, such as EEG, local field potentials and intracellular synaptic potentials, integrate
multiple sources of activity distributed across large assemblies. They have in common a power-law frequency-scaling
structure at high frequencies, but it is still unclear whether this scaling property is dominated by intrinsic neuronal
properties or by network activity. The latter case is particularly interesting because if frequency-scaling reflects the network
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that the scaling exponent reflects the correlation level imposed in the input. This systematic dependence was also
replicated at the single cell level, by controlling independently, in a parametric way, the strength and the temporal decay of
the pairwise correlation between presynaptic inputs. This last model was implemented in vitro by imposing the correlation
control in artificial presynaptic spike trains through dynamic-clamp techniques. These in vitro manipulations induced a
modulation of the scaling exponent, similar to that observed in vivo and predicted in computo. We conclude that the
frequency-scaling exponent of the Vm reflects stimulus-driven correlations in the cortical network activity. Therefore, we
propose that the scaling exponent could be used to read-out the ‘‘effective’’ connectivity responsible for the dynamical
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Introduction

Assigning a functional role to the correlations in network

activity is still controversial. While many studies have proposed

that the mean firing rate of the neuron contains much of the

information about the sensorimotor interaction with the environ-

ment, or the behavioral task being performed [1,2], other studies

have suggested a specific role of higher-order interactions in

cortical processing [3–5].

Here, we explore another way to extract correlations, through

the scaling properties of the power spectrum (hereby called ‘‘power

spectral density’’ or PSD) of the membrane potential of single

neurons. A particularly common form of frequency scaling is the

power-law, according to which the PSD scales as 1/fa at high

frequencies, with some exponent a which may be integer or

fractional (fractal). Power-law frequency-scaling is ubiquitous in

electrophysiological measurements of neuronal population activity,

from spiking activity [6] to fMRI signals [7], but its function and

origin are still controversial. Some studies consider it as the

manifestation of neural ‘‘avalanches’’, a special form of cell

assembly dynamics which would appear when the cortical network

is in a critical state [8,9] and which would be optimal for

information processing. Power-law decay functions may also

provide the basis for long-lasting interactions in adaptation

[10,11] or memory storage [12].

Several explanations for the origin of power-law scaling have

been proposed. At the intracellular level the membrane potential

activity was shown to have power-law scaling at high frequencies,

with exponent values around a~2:5 for synaptic background

activity in vivo [13,14] and channel noise [15–17]. Cable equations

predict values of a between 3 and 4 for inputs distributed in soma

and dendrites, and the non-ideality of the membrane capacitance

was proposed to account quantitatively for these values [18].

However, it is unclear whether this exponent can also be

modulated by extrinsic factors in vivo, and in particular by the

synaptic bombardment evoked by sensory input.

As we report in this paper, we decided to approach this issue by

analyzing the Vm activity of neurons recorded intracellularly in cat

primary visual cortex in vivo, when the network is driven so as to be

in an irregular activity regime. We found that the power-law

scaling observed in the intracellular activity PSD at high

frequencies is modulated by the stimulus. We examined whether
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the scaling exponent variations observed in vivo can be accounted

for by theoretical models in computo, using paradigms where the

correlation among inputs can be modulated. First, we designed a

recurrent network model composed of a thalamic and a cortical

layer and showed that when varying the correlation of the

thalamic input to the cortical layer power-law exponent

modulations were consistent with the in vivo results. The scaling

exponent thus reflects in this model a specific correlational state of

the network imposed by the input. We then dissected out those

aspects in the activity impinging on the recorded neuron that can

modulate the scaling exponent, and also explored the alternative

hypothesis that intrinsic properties of the individual neuron are

sufficient to explain the observed modulation. For this purpose, we

applied different correlated synaptic inputs to neuron models. This

confirmed that a change in the correlation of the synaptic input

can modify the power-law exponent. Finally, we investigated this

paradigm in cortical neurons in vitro using the dynamic-clamp

technique and confirmed the results obtained with computational

models. We discuss how these results are consistent with the theory

that the power-law exponent modulation reflects changes in the

correlation state of the network activity.

Results

Stimulus Dependence of Frequency Scaling in V1
15 neurons were recorded intracellularly in the primary visual

cortex of the anesthetized and paralyzed cat (see Materials and

Methods). Each neuron was recorded while presenting four full-

field stimuli through the dominant eye (Fig. 1): a drifting grating at

the cell’s optimal orientation and spatial frequency (DG), a high

spatial definition dense noise (DN), a natural image animated with

a simulated eye movement sequence (NI), and a grating animated

with the same eye movement sequence (GEM). After removing the

spikes from the Vm signals by interpolation, we computed their

PSDs (see Materials and Methods). These PSDs systematically

exhibit a scaling behaviour in a broad, high-frequency band. To

extract the scaling exponent, we fitted a linear function to the log-

log representation of the PSD, for a range of frequencies from 75

to 200 Hz (Fig. 2B), where the quality of the linear fit is high

(mean correlation coefficient r~0:95). Note that this chosen band

is also above the frequencies at which synaptic and membrane

filtering cut-off appear [19].

Figure 2A shows the PSDs of the intracellular responses to the

four stimuli for the same cell. In the log-log scale representation we

observed a dependence of the slope, and hence the frequency-

scaling exponent, on the stimulus. To confirm these effects at the

population level, we compared for each cell the values of the

exponent between pairs of stimuli. Figure 2C shows the

comparison between stimuli DG and NI for each cell, and

averaged over trials. Although the absolute value of the exponent

was highly variable from cell to cell (ranging from 2.0 to 3.5), it

was systematically lower, for the same cell, for NI than for DG

(paired Wilcoxon test, pƒ0.003). The magnitude of this difference

was much larger than the standard error of the mean (SEM)

among the different trials for the same protocol.

We checked whether the value of the exponent could be

correlated with the recorded cell’s averaged Vm or firing rate. The

corresponding correlation coefficients were computed for each

stimulus and then averaged together. We found that neither the

firing rate (r~0:13) nor the averaged Vm (r~0:2) were correlated

enough to explain the variations of scaling exponent (although

these weak correlations were marginally significant (pƒ0.07),

except for the NI protocol where no correlation was found).

We also estimated whether these systematic modulations were

visible at the spiking level, or present only at the Vm level. We

computed the Fano factor exponent (see Materials and Methods)

for the in vivo spiking responses. In contrast to the frequency-

scaling of the Vm, we did not observe any consistent variation of

the spiking scaling-exponent with the visual stimulus. Moreover,

there was no significant correlation between the Vm and the

spiking scaling exponents (r = 0.2, p§0.1).

In some cells, the same protocol was repeated consecutively,

interleaved with 2–3 s of spontaneous activity. We could not see

any consistent difference between the power law exponents of the

first trial and the others. This means that the dynamics reflected by

the power law exponent appear in less than 10 seconds.

These results indicate that the changes of frequency-scaling for

the same cell as a function of the stimulus context are mainly

determined by the differences in the visual stimulus statistics.

Based on the comparison of the frequency-scaling exponents

between all possible pairs of stimuli, we divided the stimuli into 2

groups. The exponents obtained from the intracellular responses

to DG and GEM were not significantly different from each other

but differed significantly from those obtained with NI and DN. We

summarized these results by computing the relative changes from

DN to the other protocols (Fig. 2D).

For a subset of cells, we also presented three additional stimuli

designed as surrogates of the natural stimulus. The ‘‘Spatial

Random’’ stimulus is composed of the natural image ‘‘scrambled’’

by randomizing the phases of its Fourier coefficients and animated

with the same sequence of eye movements. The ‘‘Time Random’’

stimulus is composed of the natural image animated with a

similarly ‘‘phase-scrambled’’ version of the eye movement

trajectory. Finally, the ‘‘space and time random’’ stimulus is

composed of the scrambled image animated with the scrambled

eye movements (plotted as Natural Image Surrogate or NIS in

Fig. 2D). These three stimuli evoke power-law exponents similar to

the DN protocol (no significant difference, Wilcoxon paired test,

p§0.32, p§0.014, p§0.13 respectively, and see Fig. 2D for the

third surrogate). Even though we did not see a significant

difference between NI and DN or between DN and NIS, there

is a significant difference between NI and NIS, the latter being the

Author Summary

Intracellular recording of neocortical neurons provides an
opportunity of characterizing the statistical signature of
the synaptic bombardment to which it is submitted.
Indeed the membrane potential displays intense fluctua-
tions which reflect the cumulative activity of thousands of
input neurons. In sensory cortical areas, this measure could
be used to estimate the correlational structure of the
external drive. We show that changes in the statistical
properties of network activity, namely the local correlation
between neurons, can be detected by analyzing the power
spectrum density (PSD) of the subthreshold membrane
potential. These PSD can be fitted by a power-law function
1/fa in the upper temporal frequency range. In vivo
recordings in primary visual cortex show that the a
exponent varies with the statistics of the sensory input.
Most remarkably, the exponent observed in the ongoing
activity is indistinguishable from that evoked by natural
visual statistics. These results are emulated by models
which demonstrate that the exponent a is determined by
the local level of correlation imposed in the recurrent
network activity. Similar relationships are also reproduced
in cortical neurons recorded in vitro with artificial synaptic
inputs by controlling in computo the level of correlation in
real time.

Network-Driven Power-Laws
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same stimulus with reduced phase coherence (Wilcoxon paired

test, pƒ0.003, pƒ0.003, pƒ0.006 respectively for the three

surrogate stimuli).

From this study, we concluded that the value of the frequency-

scaling exponent of the intracellular signal is strongly dependent

on the visual input. It is interesting to note that the scaling

exponent always seems to be smaller when the stimulus is less

correlated (DN being the extreme case where there is no

correlation in the stimulus).

Spontaneous Activity
We applied the frequency-scaling analysis to periods of spontane-

ous activity recorded in the same cells. Comparison between the

frequency-scaling exponent of Spontaneous Activity (SA) and those in

response to the five different stimuli was also performed at the

population level. We observed a systematic increase from SA to the

DG and GEM stimuli (Fig. 2D and Fig. 2F; paired rank Wilcoxon

test, pƒ0.0003; the average difference between paired data SA-DG

or SA-GEM is significantly different from zero, t-test, pƒ0.0001). In

contrast, the SA frequency-scaling exponents are similar to those for

DN, NIS and NI (Fig. 2E; for NI r = 0.81, paired rank Wilcoxon test,

p§0.5; slope = 0.82; the average difference between paired data SA-

NI or SA-DN is not significantly different from zero, t-test, p§0.1).

Multifractal Analysis
To estimate how much the frequency-scaling exponent tells us

about the multiscale statistics of the intracellular signal, we

performed a multifractal analysis (see Materials and Methods). We

therefore computed the two first moments of the singularity

spectrum over the different cells and protocols.

The first moment is linearly related to the frequency-scaling

exponent measured on the PSD [20]. The respective values were

indeed correlated over the population. The second moment is

slightly above 0 for the four protocols (DG: 0:0757+0:1035, GEM:

0:0816+0:1062, NI: 0:1018+0:1244, NIS: 0:0680+0:0909 and

DN: 0:0755+0:1015), while no significant differences were found

between protocols. The intracellular signal is thus very close to a

monofractal process, exhibiting self-similar behaviour. Furthermore,

the first-order part of the singularity spectrum is the only one which

varies with the visual stimulation. The functional sensitivity of our

Figure 1. Protocols of visual context dependence. A: Stimuli used in the in vivo experiments. From left to right: Drifting Grating (DG): a
sinusoidal grating with optimal spatial frequency and orientation, drifting at optimal frequency; Grating & Eye Movements (GEM): the same grating
animated by a trajectory simulating the dynamics of eye movements; Natural Image & Eye Movements (NI): a natural image animated by the same
trajectory mimicking eye movements; Dense Noise (DN): a dense noise of high spatial and temporal definition. All these stimuli were full-field and
presented monocularly in the dominant eye. B: examples of intracellular responses of the same cell to the NI (top trace) and the DG (bottom trace)
stimuli (data from Baudot, Marre, Levy, Monier and Frégnac, submitted; Baudot et al., 2004; Frégnac et al., 2005).
doi:10.1371/journal.pcbi.1000519.g001
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multiscale statistics can be reduced to the power-law behaviour of the

Vm trace.

Frequency Scaling in a Simple Retinotopic Cortical Model
To study the effect of correlated input, we considered a simple

model of a cortical network fed by an input with a controlled level

of synchrony. This model was shown to be sufficient to reproduce

the frequency-scaling exponent modulation measured above. In

order to mimic the cortical network and the retinotopy of the

input, we simulated topographically-connected networks of

excitatory and inhibitory neurons using integrate-and-fire models

and conductance-based synapses (see Materials and Methods). We

considered networks with topographically organized connectivity

where each neuron is connected to its neighbours according to a

Gaussian distribution (Fig. 3A).

The stimuli used during in vivo experiments have different levels of

correlation (Fig. 1A): the DG stimulus is highly correlated across

space and time (one Dirac impulse in the spatio-temporal spectral

plane), while the DN is, by definition, fully uncorrelated (flat spectrum

in space and time). We chose to stimulate the recurrent network

model with inputs having different levels of synchrony. The visually

driven thalamic inputs project in a local region of space (Fig. 3A), and

the cortical response is thus the product of both the thalamic input

and the recurrently mediated activity. The different levels of

Figure 2. Change of frequency-scaling according to visual context. A Power spectral density (PSD) for a given cell in response to the four
different stimuli presented in Fig. 1. The traces have been normalized so as to obtain the same value at 40 Hz, for the sake of clarity. B Illustration of
the linear fit between 75 and 200 Hz for the dense noise protocol. The power-law scaling region extends beyond those frequencies but is affected by
synaptic filtering at low frequencies and by noise artefacts at high frequencies. C Frequency scaling exponent comparison between DG and NI stimuli
for each cell. The error bars represent the standard error of the mean (SEM) on the estimation of the frequency-scaling exponent across the 10
repetitions for each stimulus. The black abscissa line indicates equality between the DG and NI condition. D Population analysis relative to the DN
case. Each bar indicates the percentage of variation from the DN frequency-scaling exponent. The asterisks (*) indicate a significant difference over
the population of cells between the frequency-scaling exponents in response to DN and a given stimulus (paired Wilcoxon test, pv0:005). The fourth
bar represents the relative change between the spontaneous activity (SA) and the DN condition. E Comparison between the frequency-scaling
exponent measured during NI stimulation and spontaneous activity (SA) for each cell. The black line indicates equality. F Same comparison than E
between DG and SA.
doi:10.1371/journal.pcbi.1000519.g002
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synchrony give rise to responses in the cortical area with different

structures (Fig. 3B), although the mean firing rate and the coefficient

of variation of the cortical activity remain roughly constant over the

different levels of input synchrony (Fig. 3C). In particular, the cortical

layer displays spontaneous waves of activity with an irregular and low

frequency firing regime (rate^4 Hz and ISI CV^1) when there is

no synchrony within the thalamic discharge. The presence of

correlation in the external input disrupts these waves and creates

synchronous firing in the cortical layer (Fig. 3B).

The frequency-scaling exponent in the model was estimated

from the Vm traces of twenty cells (see Materials and Methods).

The values of the Vm and Gexc frequency-scaling exponents both

increased when the input synchrony increased (Fig. 3D). This also

held for the inhibitory conductance Ginh which behaved as its

excitatory counterpart (data not shown). This is consistent with the

in vivo results where stimuli with more correlation (DG, GEM)

evoke higher values of the scaling-exponent than the ‘‘decorre-

lated’’ stimuli (NI, NIS and DN).

Determinants of the Scaling Exponent
We next examined which features of the network activity

structure could be related to this modulation of the scaling

Figure 3. Modulation of the frequency-scaling in a recurrent network model with inputs of variable synchrony and spread. A
Schematic representation of the network structure and connectivity. The cortical (lower sheet, blue and red neurons) and thalamic input (upper
sheet, yellow neurons) layer-like networks (1 mm2) face each other. The cortical neurons are locally connected together, according to a Gaussian
distribution (sc~0:15 mm) and the retino-thalamic input projects its synaptic connections on the cortical layer through a narrower Gaussian
distribution (st~0:05 mm). B Example of raster plots in the cortical layer in response to two thalamic input synchrony levels (top: synchrony of 0%;
bottom: synchrony of 10%). C Mean firing rate (top) and coefficient of variation (bottom) of the cortical layer response to thalamic inputs of different
synchrony levels. For each simulation, twenty neurons were randomly chosen among the network population to estimate error bars. D Vm (top) and
Gexc (bottom) frequency-scaling exponents as functions of the input synchrony. Bars indicate standard deviations of the scaling exponent values. E
Averaged spatial cross-correlation between neuronal activities as a function of the distance between pairs of neurons, for different input synchrony
levels, normalized by the total area of the distant-dependent cross-correlation function. Inset: same graph without the normalisation. F values of the
Vm frequency-scaling exponent as a function of the coefficient of correlation integrated over distance. Inset: values of the frequency-scaling
exponent as a function of the correlation extent in the network activity (see text). The same results are shown in red for an infinite spread of the
thalamic input.
doi:10.1371/journal.pcbi.1000519.g003

Network-Driven Power-Laws

PLoS Computational Biology | www.ploscompbiol.org 5 September 2009 | Volume 5 | Issue 9 | e1000519



exponent. Fig. 3E shows the spatial pairwise cross-correlation

between pairs of neuron as a function of the interneuronal

distance, for different levels of the input synchrony. The increase

in input synchrony resulted in two simultaneous changes: a global

increase of the cross-correlation values (Fig. 3E, inset) as well as a

flatter spread profile over larger distances; when normalizing by

the integral of the correlation over distance, it appears that the fall-

off of the cross-correlation function (CC) is steeper for lower levels

of synchrony (Fig. 3E). In summary, the different levels of input

synchrony modulate not only the global level of the correlation in

the cortical network, but also its topographic extent and distance

dependence.

We next quantified the two features of the network activity that

are modulated by the input synchrony and compared their

modulation to that of the Vm exponent. We first compared the Vm

exponent values to the integrated correlation, defined as the

normalised cross-correlation integrated over distance. The fre-

quency-scaling exponent increased linearly with the integrated

correlation (from 0.0 to 0.05) and saturated around 5.25, for an

integrated correlation of approximately 0.1 (Fig. 3F).

We also observed that the pairwise correlation between neurons

scales with distance when expressed in logarithmic coordinates,

which could be related to the V-m frequency-scaling exponent.

The corresponding cross-correlation scaling exponent (CC SE),

which reflects the fall-off gradient of the spatial correlation,

decreases linearly when the Vm exponent increases (Fig. 3F, inset).

To disentangle the influence of these two factors, we tested the

effect of the spread of the thalamic projection to the cortical layer,

which parameterizes the extent of the spatial correlation of the inputs.

We ran the same simulations with an infinite spread (i.e., the thalamo-

cortical connections were random). This condition might be related

to the effect of a decorrelated background noise. While the relation

between the cross-correlation scaling exponent and the Vm exponent

was shifted, the relation between the integrated correlation and the

Vm exponent remained unchanged. We found similar results by

varying the spread between these two extreme values (data not

shown): the spread had no direct influence on the Vm exponent value

but shifted the baseline cross-correlation scaling exponent. Thus the

variation of the spread, which determines the spatial structure of the

input, did not alter the relation between the integrated cross-

correlation and the Vm exponent.

This important relationship shows that, in this model, the

integrated correlation is detected at the single-cell level through

the membrane potential power spectrum scaling property for any

stimulus. This measure thus provides a reliable hint about the

actual functional state of the network. It also appears that, even if

the spatial structure of the correlation is varied, the exponent value

remains unchanged. This latter observation could explain why

stimuli differing in their spatial structure can produce similar

exponents in vivo.

As in the previous in vivo study, we estimated the Fano Factor

scaling exponent. Even when averaging over a population of

randomly assigned neurons, the mean Fano Factor did not exhibit

any systematic variation with the input synchrony, the integrated

correlation or the cross-correlation scaling exponent. This is in

accordance with the in vivo results.

Finally, it is interesting to note that this network model can

reproduce the changes in the frequency-scaling of the Vm observed

in vivo, despite its simplicity and the absence of any form of power-

law in the spatial rules of connectivity: the thalamo-cortical and

the cortico-cortical connectivities are drawn in our simulations

from Gaussian distributions. Therefore it is not necessary to

implement a scale-free connectivity to observe a frequency-scaling

exponent emerging in the synaptic bombardment.

Frequency-Scaling in Single-Cell Models
We have shown that the Vm scaling exponent is related to the

integrated cross-correlation of the network activity. This integrated

correlation depends on at least two factors: the global correlation

level of the activity ( correlation strength) and the spatial extent of the

network correlation (correlation extent). In our recurrent network

model, both are modified simultaneously when varying the input,

which makes the isolation of the precise feature modulating the

scaling exponent difficult. We thus turned to the modeling of a

single neuron receiving parameterized correlated synaptic noise in

order to dissect out the influence of the different parameters of this

correlated noise on the postsynaptic Vm scaling exponent.

Furthermore, although the network model provides a possible

explanation for the Vm frequency-scaling exponent modulation,

this does not exclude a possible alternative hypothesis for our in

vivo observations : due to the non-linearity in the neuronal transfer

function, the Vm frequency-scaling exponent variation in vivo could

be due to the variation of the input firing rate or the different

depolarisation levels from one protocol to the other.

For these reasons we measured the Vm frequency-scaling

exponent in isolated neuronal models in response to several

correlated synaptic inputs, where all these parameters can be

varied independently. We also injected the same correlated

synaptic patterns into biological neurons in vitro through dynamic

clamp. This allowed us to test independently the effect of the

correlation strength and extent, and to test the simpler hypothesis

aforementioned.

To further understand the relationship between the presynaptic

activity and the Vm frequency-scaling, we designed a model

assuming that the irregular activity originates in the synaptic

activity impinging on the recorded cell. Indeed, since the

frequency-scaling exponent varies for the same cell and different

visual stimuli, it must be linked to the activity of the network

surrounding the observed neuron. Note that, being interested only

by these relative changes, we did not search for the mechanisms

shaping the absolute value of the Vm PSD scaling, which may

include intrinsic mechanisms [18,21,22]. For this reason we show

the relative modulation of the values of the frequency-scaling

exponent in different models and in vitro experiments, the baseline

being the exponent in response to Poisson stimulation, unless

otherwise noted.

In the retinotopic model discussed in the previous section,

synchronous input in the thalamic layer evoked synchronous firing

in the cortical layer at random positions. These firing assemblies

affect the recorded neuron through lateral connections with

different propagation delays, which depend on the distance from

the presynaptic neuron. The temporal correlations in the

presynaptic spike train impinging on the recorded cell thus reflect

both the direct thalamic input and the spatial correlations

observed in the intracortical distance-dependent cross-correlation.

Our aim was to determine how these temporal correlations present

in the afferent pattern are conveyed from the presynaptic

bombardment to the subthreshold activity through cell integration.

Note that the propagation delays play a crucial role in the

translation of spatial correlations into temporal correlations.

Indeed, if the presynaptic population could interact instanta-

neously with the postsynaptic cell (no propagation delay),

synchronous firing would only increase the membrane potential

variance.

The model is composed of N presynaptic neurons (Poisson

processes) that all fire at the same mean rate n, with a constant

synchrony fraction r. This means that each emission of a spike

occurs simultaneously in kz1~rN neurons (Fig. 4). These

presynaptic neurons then project with different conduction delays
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to the same postsynaptic neuron, which represents the recorded

cell. This means that spikes emitted simultaneously by various

presynaptic sources will arrive with different delays at the

postsynaptic neuron, thus creating a high-order structured

temporal correlation pattern. The delays are chosen randomly

according to a distribution p(t) (Fig. 4).

We emphasize that this model is not biologically realistic: it is a

correlated spike train generator parameterized by the synchrony

level r and the delay distribution p(t). To give more intuition

about what these parameters represent, and to make a link with

the recurrent model, we can interpret r as the strength of the

correlations in presynaptic activity, and p(t) as the way these

correlations are temporally distributed. Note that both of these

parameters would influence the integrated correlation measured

previously in the recurrent model (the spatial correlation in the

recurrent model becomes a temporal correlation when considering

the delays between distant neurons).

In this model, it can be shown [23,24] that the analytical

expression for the conductance PSD resulting from the synaptic

integration of all these inputs is given by Eq. 5

c(v)~
Nn

2p
a(v)j j2(1zk p(v)j j2)

where a(v) is the Fourier transform of the synaptic time course

(when the synapse is exponential, this is a Lorentzian curve),

and p(v) is the Fourier transform of the delay probability

distribution.

From this expression, we find that a controlled way to impose an

activity-dependent frequency scaling behaviour in this model is to

impose a temporal delay distribution having itself a power-law

form. Furthermore, this form of correlation is what we found in

the recurrent model, although it was not implemented in the

connectivity. For this reason the delay distribution will have the

Figure 4. Conceptual scheme of the synchrony generator model and the corresponding conductance injection in model and in vitro
neurons. A Simple representation of the conductance generator. At each time step dt, with a probability proportional to the firing rate ndt, k+1
neurons emit a spike synchronously. These spikes are then conveyed to the postsynaptic neuron with different delays, distributed according to a
power-law probability density function (red curves). The arriving spikes then trigger post-synaptic conductances of exponential form (green curve,
synaptic time course). The resulting conductance trace Gexc (green trace) has a PSD (blue curve) with a frequency power-law scaling behaviour. The
analytical relation between the Fourier transform of the delay distribution and the PSD is given above the graphs. B The resulting synaptic
conductance is then injected either in a model of single neuron or in a biological neuron through dynamic-clamp (see Materials and Methods). In
both cases, the resulting membrane potential is measured and the corresponding PSD is estimated.
doi:10.1371/journal.pcbi.1000519.g004
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form

p(t)!
exp ( {t

tmax
)

tb
ð1Þ

The b parameter parameterizes the extent of the delay

distribution: the higher is b, the narrower will be the delay

distribution. An infinite value of b would correspond to all delays

equal to 0. We emphasize that this choice of delay distribution is

not ad hoc, but rather is imposed in order to control the Vm

frequency-scaling exponent. Other forms of delay distribution

might produce more realistic presynaptic patterns, but we focus

here on the part of the correlations that will exert a direct control

over the postsynaptic frequency scaling.

The power spectral density of this delay distribution is [6]:

jp(v)j2! 1

(1z(vtmax)2)(1{b)
ð2Þ

The synaptic conductance Gsyn frequency-scaling exponent is thus

equal to 2z2(1{b) for frequencies beyond the synaptic filtering

and the delay cut-offs. Note that, as already shown at the

population level in Fig. 3F, the synchrony level detected in the

presynaptic train has a ‘‘gating’’ role according to (Equ. 5): no

synchrony at all would give a Gsyn frequency-scaling exponent of 4

whatever the value of b. Moreover, the relationship between the

exponent and b is here uncovered as soon as a minimal level of

synchrony is present in the presynaptic population (theoretically,

any kw0).

Excitatory-Only Simulations
We numerically simulated this model to check the previous

analytical expression. We took a population of N~5000 neurons

and first fixed the presynaptic firing rate to n = 10 Hz. For

different values of the delay distribution parameter bexc, and

synchrony r, we simulated the model to produce Gexc and Vm

traces. Figure 5A shows the resulting Gexc and Vm PSDs, for a

fixed synchrony level r~6%, and bexc ranging from 0 to 1. The

PSD frequency scaling decreases when bexc increases for

frequencies above 20 Hz.

We then measured the frequency-scaling exponents in these

traces to quantify this result (see Materials and Methods) and

plotted them as a function of the synchrony level r and bexc

(relative to the Poisson exponent). As predicted, the exponent

decreases when the parameter bexc increases (Fig. 5B). This inverse

relation between the Gexc frequency-scaling exponent and bexc

appears more and more clearly as the synchrony r increases, and

saturates for rw4% (Fig. 5B). Nevertheless, even with an amount

of synchrony as small as r~0:5%, the dependence of the power-

law on b is already monotonic. We obtained a linear relation

between b and the output frequency-scaling exponent, although

the absolute values are not exactly those predicted by the

analytical relation, most probably due to a finite-size bias of the

estimation.

To illustrate this ‘‘gating’’ effect of the synchrony, we plotted the

frequency-scaling exponent against the synchrony level r, for fixed

bexc (Fig. 5C). When increasing r, the exponent first increases and

then saturates to a plateau which depends on bexc.

Identical results were obtained for Vm but with a systematic shift

of 2 corresponding to the membrane integration (absolute

exponent values were between 2 and 4 for the conductance, and

between 4 and 6 for Vm). This is what we would expect for a

current-based model for which the effect of membrane integration

results in a shift of 2 in the frequency-scaling exponent. This shows

numerically that the non-linearity induced by the use of

conductance-based synapses does not alter this relationship.

Therefore, as long as few neuron assemblies are firing simulta-

neously in the presynaptic population, their correlations are made

visible through the postsynaptic membrane potential PSD. Note

that the results displayed in panels B and C of Fig. 5 are

reminiscent of those obtained for the retinotopic cortical network

in Fig. 3F. Indeed, increasing the synchrony or decreasing the b
parameter would both increase the integrated cross-correlation,

which in turn increases the Vm scaling exponent.

Excitatory-Inhibitory Simulations
The synaptic bombardment received by a cortical neuron is

composed of both excitatory and inhibitory inputs. We extended

our model by adding a population of presynaptic inhibitory

neurons which has the same organization as the excitatory

population described earlier, parameterized by the synchrony r
and the delay distribution parameter binh. While independently

varying the inhibitory and excitatory exponents (bexc,binh, we

measured the corresponding Vm frequency-scaling exponent. We

first performed this analysis with the two presynaptic populations

having a fixed amount of synchrony (r~6%), to ensure the impact

on the Gexc and Ginh frequency-scaling exponents, and being

completely uncorrelated. Fig. 6A shows how the Vm frequency-

scaling exponent varies with bexc and binh. The Vm frequency-

scaling exponent seemed to be dominated by the bexc parameter,

while the influence of the inhibitory inputs remained marginal.

Since the firing rate is similar for excitatory and inhibitory

neurons, this dominance was due to the excitatory-inhibitory ratio

(
Nexc

Ninh

~4). We checked that it was not due to the closer inhibitory

reversal potential in additional simulations where we changed the

reversal potential (data not shown). Note that when bexc~binh, the

Vm frequency-scaling exponent behaves as in the excitatory-only

case (Fig. 6D).

We then examined the case where excitatory and inhibitory

inputs are correlated, which is more realistic in view of most of the

in vivo studies [25–27]. The functional relationship between

conductance correlations and the Vm frequency-scaling exponent

is conserved for stronger excitatory-inhibitory correlation, al-

though it is slightly affected, especially for small bexc values

(Fig. 6B–C). To illustrate this effect, we plotted the variation of the

Vm frequency-scaling exponent for binh~bexc and different levels

of correlation (Fig. 6D).

For a sufficient amount of synchrony, the final Vm frequency-

scaling exponent will thus be mainly influenced by the

frequency-scaling exponent of the delay distribution bexc, and,

to a lesser extent, influenced by the correlation between

excitatory and inhibitory conductances, and binh. We found that

adding a constant delay between the excitation and inhibition as

often observed experimentally does not change the Vm PSD

slope value.

To conclude, our model shows how changes in the parameters

which determine the correlation in the presynaptic bombardment

affect the frequency-scaling exponent of the Vm signal. These

changes are of the same order of magnitude as that which was

observed in vivo. Increasing synchrony increases the Vm frequency-

scaling exponent up to a limit which depends on the b parameters.

Increasing bexc or binh, or the correlation between excitation and

inhibition, decreases the Vm exponent. However, it is much more

affected by the correlations present in the excitatory neurons than

in the inhibitory ones, since there are many more excitatory

neurons.

Network-Driven Power-Laws

PLoS Computational Biology | www.ploscompbiol.org 8 September 2009 | Volume 5 | Issue 9 | e1000519



Spike and Vm Power Law Relationships
Previous work on power-law frequency-scaling has mainly been

based on extracellular recordings, either to characterize single-cell

spiking correlations [6] or self-organized avalanche dynamics in

networks [8]. Intracellular recordings, as used in the present study,

offer a larger sampling of the network dynamics. Indeed, we can

ask whether correlations in the synaptic input visible at the Vm

level are still present in the spiking output. We estimated the Fano

Factor (FF) for the numerical model to better understand the Vm-

spike frequency-scaling exponent relation.

We measured the frequency-scaling exponent in the spiking

activity in response to different correlated synaptic input patterns,

built by varying the parameters bexc and binh. Figure 7A illustrates

the Fano factor scaling behaviour for bexc~binh ranging from 0 to 1,

and shows a linear increase of the spiking frequency-scaling exponent

with bexc for time bins between 10 and 100 milliseconds. However,

we then tested whether the same relationship holds for different

resting potentials Vrest of the postsynaptic neuron (Fig. 7B). It appears

that the relation between the spiking and the Vm frequency-scaling

exponents is strongly dependent on the depolarization level.

This dependency is confirmed when varying bexc and binh

independently. Other parameters can drastically influence the

spiking frequency-scaling exponent. As an illustrative example,

figure 7C–D show the corresponding spiking frequency-scaling

exponents for two different depolarization levels and excitation-

inhibition correlation levels; in 7C the postsynaptic Vrest~{65mV
and there is no correlation, whereas in 7D Vrest~{62:5mV and

the correlation is set to 0.4%.

In light of these results, the lack of correlation between Vm and

spiking frequency-scaling exponents, and the absence of systematic

modulations for the spiking exponent in vivo and in the recurrent

model can be explained. This is likely due to the sensitivity of the

Figure 5. Variation of the value of the frequency-scaling exponent at the conductance and membrane potential levels for
excitatory input only as a function of the parameters bexc and r (synchrony percentage). Excitatory conductance Gexc and membrane
potential Vm are plotted in the left and right column respectively. A Illustration of the PSD modulation on a log-log scale for different values of the
parameter bexc ranging from 0 (light blue) to 1 (dark blue). B Variation of the output frequency-scaling exponent with the bexc parameter, for different
levels of synchrony. When 4% of the presynaptic neurons are synchronous, the relation is almost saturated. C The gating effect of synchrony. For
three fixed values of b = 0.1, 0.5 and 0.9, the curves represent the modulation of the output frequency-scaling exponent according to percent
synchrony.
doi:10.1371/journal.pcbi.1000519.g005
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latter to other parameters that also vary with the stimulus, such as

the depolarization level. The spiking frequency-scaling exponent

for single-cell study is thus hardly sufficient to characterize the self-

similar behaviour of the neural activity. In the in vivo data, the FF is

measured across a high heterogeneity of depolarization levels, and

is thus not reliably linked with the presynaptic correlation. In

contrast, the subthreshold activity has shown its robustness to

changes in depolarisation, and thus provides a much better insight

into the network correlation state, being averaged over a large

number of presynaptic spiking neural elements.

Controls for Different Firing Rates and Resting Potentials
So far our model has shown how the frequency-scaling

exponent can be modulated by the correlations present in the

presynaptic activity pattern. However, we had to control for a

simpler alternative hypothesis. In in vivo data the evoked neuronal

mean activity was modulated by the different stimuli (on average

160% decrease from DG to NI), implying that the presynaptic

firing rate of the recorded cell varies from one visual stimulus to

the other. It is possible that this increase of firing rate induces a

change in the frequency power-law scaling. In the following, we

call this hypothesis the ‘‘first-order hypothesis’’. The weak

correlation between the cell firing rate and the frequency-scaling

exponent observed in the in vivo section makes such an hypothesis

rather unlikely. However, to directly test this hypothesis on our

model, we changed the input mean firing rate from 2.5 Hz to

10 Hz for both excitatory and inhibitory synaptic inputs. For each

condition, we computed the Vm frequency-scaling exponent.

Figure 8B (left panel) shows that it is almost unaffected by the

input firing rate. Although we observed a small decrease in the

frequency-scaling exponent when increasing firing rate, this could

still not explain the in vivo results. Indeed, in the latter case, even

though the correlation is weak, the frequency-scaling exponent

increase is concurrent with an increase of the cell firing rate.

We also checked whether the membrane potential level Vrest

can influence the frequency-scaling exponent. To do so, we varied

the recorded cell membrane potential level by adjusting the

synaptic strengths (see Materials and Methods). As for the firing

rate, no significant influence in the frequency-scaling exponent can

be attributed to the depolarization level (Fig. 8C, left panel),

confirming the weak correlation observed in vivo.

Despite the lack of evidence for the ‘‘first-order hypothesis’’, our

model does not incorporate biologically realisitic integrative

features. It has been shown in previous studies [15,21,22] that

the cell’s intrinsic properties, shaped by its ionic channels, could

have an impact on the Vm PSD form when the cell is submitted to

noisy inputs. We performed the same analysis by replacing the

integrate-and-fire model with a Hodgkin-Huxley model. The Naz

and Kz ionic channels could have an influence on the variation of

the frequency-scaling exponent. However, adding these mecha-

nisms did not alter the Vm frequency-scaling exponent’s

dependence on the input firing rate, nor on the mean postsynaptic

membrane potential (Fig. 8B–C, middle panel). The results are

identical to those obtained with the integrate-and-fire model.

Controls were also performed with normally distributed synaptic

weights for various standard deviations and gave identical results

(Fig. S1A–B). On another set of controls, we changed the synaptic

waveform by using synapses with a rise time on the order of 1 ms

(b-synapse). The controls with this new type of synapse gave

identical results to previous cases (Fig. S1C–D).

Figure 6. Vm Relative values of the frequency-scaling exponent for different excitatory and inhibitory parameters bexc and binh. The
synchrony percentage r has been fixed to 6% in each simulation. A The relative Vm frequency-scaling exponent (color-coded) for bexc and binh

ranging from 0 to 1 without any correlation between excitatory and inhibitory inputs. B,C Same graph but with 40% (panel B) and 80% (panel C)
correlation between excitatory and inhibitory inputs. In each graph, the excitatory input has a stronger influence on the output frequency-scaling
exponent than the inhibitory input. D For binh~bexc , the output frequency-scaling exponent modulation is represented according to different
correlation levels.
doi:10.1371/journal.pcbi.1000519.g006
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Apart from the intrinsic mechanisms present in the somatic

membrane, a possible source of modulation of the absolute value

of the frequency-scaling exponent is the integrative property of the

dendritic tree. To test how the dendritic arborization might impact

the somatic subthreshold activity, we simulated synaptic input

distributed in the dendrites of reconstructed pyramidal neurons.

As shown in Table S1, the relative modulations of the exponent

are well captured by correlation changes in the model, while global

conductance changes had a negligible effect. However, it is

important to note that these simulations were done using standard

simulation tools (NEURON in this case), and thus used the

standard cable equations. It has previously been shown that the

standard cable equations cannot reproduce the correct frequency-

scaling of the Vm PSD, and that taking into account the non-ideal

character of the membrane capacitance could yield the correct

frequency-scaling [18]. This could explain why the in vivo absolute

values of the scaling exponent are not well reproduced here.

However, the relative modulations of the exponent are well

captured by correlation changes in the model, while global

conductance changes had a negligible effect.

Dynamic-clamp experiments in vitro
Numerical simulations gave important insights about the role of

intrinsic properties in the effects we see, but no computational

model can guarantee an exhaustive exploration of such mecha-

nisms. Indeed, even though the first-order hypothesis was

invalidated for Hodgkin-Huxley models, we cannot exclude the

influence of other ionic currents. Therefore, we performed the

same test on real biological neurons through dynamic-clamp

in vitro.

The correlated conductance traces generated by our model

were directly injected into rat visual cortex neurons recorded in

vitro (n = 9) using the dynamic-clamp technique (see Materials and

Methods and Fig. 4B). We performed the same control as above

changing the mean input firing rate. The frequency-scaling

exponent barely changed (Fig. 8B, right panel; r~{0:09,

p§0.3), confirming that the overall presynaptic activity level has

a negligible effect compared to the conductance correlations

(characterized by the b parameter). Even the weak correlation

observed between the mean input firing rate and the frequency-

scaling exponent has the opposite sign to what is observed in vivo.

The relative variation for different b has the same magnitude as

the numerical models (r~0:92).

The previous results were obtained for different resting membrane

potentials and did not show any noticeable effect regarding the mean

depolarization (Fig. 8B, right panel, r~{0:002, p§0.9).

In order to measure the influence of the depolarization level on

the frequency-scaling exponent, we systematically varied the

conductance strength to change the mean Vm of the recorded

cell. The frequency-scaling exponent did not exhibit significant

variation (Fig. 8C, right panel). In vitro experiments thus confirm

our previously observed results from numerical models.

In summary, the correlation in the activity impinging on the

recorded cell plays a major role in determining the frequency-

scaling exponent of the Vm. Other parameters, such as the total

conductance (see also Fig. S3) and the balance between excitatory

Figure 7. Relation between the Vm frequency-scaling exponent and that measured from the Fano Factor (FF) of the output spike
train. A Example of the FF changes as a function of time bin, for different input parameters bexc. The resting potential Vrest has been set to 260 mV
to ensure a large enough number of spikes. The synchrony parameter is fixed at 6%. B Relation between spiking and relative Vm frequency-scaling
exponents for different resting potentials (Vrest = 265 mV, 262.5 mV and 260 mV). C,D Fano Factor frequency-scaling exponents as a bivariate
function of excitatory and inhibitory bexc and binh parameters, in the absence of excitatory-inhibitory correlation and for and Vrest~ 265 mV (C), and
in the case of 40% of correlation and Vrest~ 262.5 mV (D). In this latter case, Vrest has been increased by a few mV to ensure a reasonable level of
spiking activity.
doi:10.1371/journal.pcbi.1000519.g007
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Figure 8. Vm frequency-scaling exponent changes for different input frequencies n and for different resting membrane potential
Vrest. These controls were performed with integrate-and-fire neurons (left column), Hodgkin-Huxley neurons (middle column) and with biological
neurons during in vitro experiments (right column). The synchrony percentage was kept at 6% and there was no correlation between excitatory and
inhibitory synaptic inputs. For the in vitro experiments, each light line represents a cell, for which ten trials have been repeated with the same
parameters. Error bars are the standard deviation over the trials. The bold line represents the average across cells and trials. Note that the reference
value subtracted to each measured exponent is the one obtained when the input parameter b~0:1 to allow a direct comparison between models
and in vitro data. A PSDs obtained for three values of b~bexc~binh[ 0:1, 0:5, 0:9f g. The modulation of the PSD slope is apparent. The absolute slope
values are respectively (see Materials and Methods): 23.35 23.82 and 24.4 (integrate and fire, left); 23.35 23.82 and 24.4 (Hodgkin-Huxley, middle);
23.28, 23.7 and 23.92 (in vitro, right). B For three values of b~bexc~binh[ 0:1, 0:5, 0:9f g, the modulation of the Vm output frequency-scaling
exponent according to the mean input firing rate per presynaptic neuron. C Same measures according to the postsynaptic resting membrane
potential Vrest.
doi:10.1371/journal.pcbi.1000519.g008
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and inhibitory conductances, have negligible effects. These results

support the idea that changes in the frequency-scaling exponent

observed in vivo reflect changes in correlations in the external

stimulus-driven activity.

Discussion

In this paper we have analyzed the factors affecting power-law

frequency-scaling in the membrane potential of cortical neurons.

Our main findings are that (1) intracellular recordings of cat

primary visual cortex neurons in vivo display power-law frequency-

scaling at high frequencies, with a fractional exponent which

depends on the spatio-temporal statistics of the visual stimuli; (2)

this effect was reproduced in computational models of a recurrent

network, and of single neurons of various degrees of complexity;

the main determinant of the exponent was the correlation

waveform in the presynaptic activity correlation; (3) other factors

such as the conductance state had no effect on this measure. These

findings were confirmed in cortical neurons in vitro using dynamic-

clamp injection of random synaptic conductances with controlled

degrees of correlation. We discuss below the implications of these

findings and how they relate to previous work.

Influence of Network Correlations and Intrinsic Properties
Our central finding in vivo is that the frequency-scaling exponent

in V1 is modulated by the visual stimulus statistics. Because such

changes are detected in the same cells, they must necessarily reflect

changes in the spatio-temporal structure of presynaptic activity.

Guided by the fact that intracellular activity in sensory and

prefontal cortex shows long lasting temporal correlations, we

hypothesized that the main factor affecting frequency-scaling

exponents is the correlation in presynaptic activity. This

hypothesis was supported by numerical simulations. A similar

modulation of the Vm frequency-scaling exponent was also found

in a recurrent network for which the input correlation was varied :

the scaling exponent increased when the input correlation

increased above a certain threshold (required to be detectable).

This threshold was not reached during decorrelated states, such as

those imposed by surrogate natural scenes.

In the recurrent model, the input correlation modulated both

the the absolute strength and temporal structure of correlations.

To investigate separate modulations of these two factors, we chose

a model of presynaptic inputs with a temporal power-law

structure. This choice was made for two reasons: first, because

this temporal structure was observed in our network model,

without implementing any scaling in the connectivity; second,

because it provided an operational way to control the form of the

correlations in the input, and isolate which factors influence the

output frequency-scaling exponent. The input is thus character-

ized by its frequency-scaling exponent, and we found that the Vm

frequency-scaling exponent of the subthreshold output is linearly

related to this input exponent. However, this relationship is

present only if the correlation strength is large enough. According

to these results, the Vm frequency-scaling exponent increase

observed in vivo could plausibly be due to a global correlation

strengthening in the surrounding network and/or by a narrowing

of the spatial spread of correlation.

The hypothesis for a determinant role of correlations is also

consistent with in vitro experiments, where we recreated artificial

and controllable synaptic activity by dynamic-clamp. The fact that

correlation changes are reflected by changes in the frequency-

scaling exponent of the Vm frequency-scaling means that intrinsic

cellular properties do not have major dynamical influences on this

scaling, and that it mostly reflects synaptic activity controlled by

the visual stimulation context. In particular, we showed that

neither the mean level of synaptic bombardement nor the

postsynaptic depolarization level could significantly modulate the

Vm frequency-scaling exponent, even though the cell integrative

properties shape its static absolute value [15–17,21].

A Signature of Avalanche Dynamics?
The finding that Vm activity presents power-law frequency-

scaling is reminiscent of the power-law relationships of self-

organized critical states, similar to those found from multi-site

local-field potential recordings in vitro [8,28]. In the latter case, self-

organized critical states are characterized by the production of

‘‘avalanches’’ of activity, whose size distribution follows a power-

law. However, the power-law relations were found there in the

frequency domain, which is very different from the distribution of

event sizes detected in our study, so our results should not be taken

as evidence for avalanche dynamics. We have performed an

avalanche analysis on the recurrent network model, and as was

reported in a previous study [29], we did not find evidence for

avalanche type dynamics in the network during AI states.

Moreover, it has to be noted that the power-law relations found

here depend on the stimulus, which means that the frequency-

scaling exponent does not represent a unique signature of cortical

network activity, but rather reflects a measure of the dynamic

interplay between the sensory evoked activity and the ongoing

recurrent network activity.

Relationship between the Subthreshold and Spiking
Frequency-Scaling Exponents

Power-law frequency-scaling was reported previously in extra-

cellularly-recorded spiking activity [6,30,31]. We observed that the

Vm and spiking frequency-scaling exponents are linearly related.

However, the exact value of the frequency-scaling of spiking

activity critically depends on the Vm depolarisation level, and thus

does not reliably reflect network correlation state. Our study shows

that the Vm frequency-scaling exponent, which reflects the

integration of thousands of input sources, can uncover features

of the population activity that were not visible at the single cell

spiking level or when assigning a limited number of cells at

random.

Correlation States in Evoked and Spontaneous Activities
Our results imply that tracking the relative changes of the Vm

frequency-scaling exponent could be a way to characterize

dynamic changes in the correlations hidden in the global

connectivity network, but read out at the subthreshold level by

each member cell of these overlaid functional assemblies. Having

interpreted the relative variations of the frequency-scaling

exponent, we can now link these variations with the type of visual

stimulus presented.

In order to emphasize the role of dynamic cortical non-

linearities in the stimulus-dependency of the power-scaling, we

checked whether or not these exponent changes were already

apparent in the linear prediction of the Vm responses. To do so, we

used the first-order kernel of the receptive field obtained by dense

noise mapping to reconstruct linear predictions of the subthreshold

dynamics for the different classes of stimuli and tested the

contextual dependency of the spectral scaling properties of the

linear predictor. The modulatory effects were not retrieved, which

was expected since the estimation of the frequency-scaling

exponent is performed on high frequencies (between 75 Hz and

200 Hz) that are not accounted for by the linear kernel (data not

shown). We conclude that the exponent variations are not a linear
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read-out of the scaling behaviour of the stimulus but rather the

product of the non-linearities in the input-output relationship

imposed by the cortical network.

According to our recurrent network study, the frequency-scaling

exponent decreases when switching from DG stimuli to NI or DN

stimuli should correspond to a decrease in the correlation strength.

Following this interpretation, it could appear surprising that

stimuli with very different structures, such as NI and DN stimuli,

evoke similar values of the Vm scaling exponent. However, our

study showed that the Vm scaling exponent is invariant to changes

in the spatial structure of the input. As a consequence, stimuli with

different spatial structures can evoke similar scaling exponents

provided their global correlation levels are all low.

On the one hand, although it has not been demonstrated

directly, natural movie stimuli probably induce decorrelation, for

several reasons. First, our natural image is animated most of the

time by fixational eye movements, which may already decorrelate

activity at the LGN [32]. Second, the decorrelation theory [33]

predicts that cortical responses to natural scenes should be

decorrelated in order to maximize the transmitted information,

and this prediction has been confirmed in V1 studies [34]. On the

other hand, dense noise, as a fully uncorrelated stimulus, also

evokes a very decorrelated response.

These low correlation levels for both stimuli are probably what

make them indistinguishable from the perspective of the scaling

exponent. In short, even if the structures of these inputs are very

different, thalamic and cortical processing may reduce the initial

correlations down to a similar level. Furthermore the scaling

exponent captures neither the difference in the spatial structure of

these resulting activities nor the difference in the low frequency

band dominated by the stimulus spectrum. Taken together these

arguments can explain why we observed similar scaling exponents.

The same remark holds for DG and GEM stimuli: despite their

difference in temporal structure, they might evoke similar levels of

correlation, and thus similar scaling exponents, despite the

difference in input spatial structure and low frequency content.

Finally, the same argument may explain why we found similar

exponents for the spontaneous activity and the natural stimulus:

for high frequencies, both exponents likely correspond to a very

decorrelated activity, even if there might be a residual synchrony.

Note however that this striking correlation between NI and AS is

not necessarly present at lower frequencies.

Several studies have compared the structure of the spontaneous

activity to that of the evoked activity. The spatial structure of the

spontaneous activity measured with voltage-sensitive dye (VSD)

imaging has been found to be similar to the DG-evoked activity

[35,36], although this result could not be replicated in awake

animals [37]. On the other hand, [38] found that the temporal

correlations measured in multi-unit recordings seems to be similar

for dense noise, natural scenes and spontaneous activity. Our

results and a recent theoretical study [39] seem to be compatible

with the latter observations. However, they are not necessarily in

total contradiction with the VSD results since our measures

concern different frequency bands: while we measured frequency-

scaling exponents between 75 and 200 Hz, the VSD measures

mostly concerned dye signal fluctuations at frequencies below

20 Hz. It thus appears most likely that V1 responses to natural

scenes and spontaneous activity share similar correlation features

in the high-frequency band.

We have shown that the frequency-scaling exponents measured in

the intracellular activity can vary under the influence of the visual

context for the same cell. Our model relates this modulation to a

dynamic change in the network correlation state and could be

associated to the underlying dynamic dimensionality [40]. Further

studies need to address at the population level (LFP or VSD) how the

frequency-scaling exponents of the network activity may vary with the

stimulus context [41], and if such changes could be indicative of the

detection of specific sensory statistics in the external drive or their

spontaneous recall by the recurrent structure of the network.

Materials and Methods

Animal Experimentation
All in vitro and in vivo research procedures concerning the

experimental animals and their care adhered to the American

Physiological Society’s Guiding Principles in the Care and Use of

Animals, to European Council Directive 86/609/EEC and to

European Treaties Series 123 and were also approved by the regional

ethics committee ‘‘Ile-de-France Sud’’ (Certificate 05-003).

In vivo Preparation
Cells in the primary visual cortex of anaesthetized (Althesin) and

paralyzed adult cats were recorded in vivo using sharp electrode

(potassium methylsulfate 3 M, 70–100 MV) recordings (average

Vrest = 267 mV, 0 nA) as described elsewhere [25,42]. Data

processing and visual stimulation protocols used in-house software

(G. Sadoc, Elphy, CNRS-UNIC).

Visual Stimulation
The analyzed data come from in vivo experiments to be

presented in full in a companion paper (Baudot, Marre, Levy,

Monier and Frégnac, submitted). Preliminary accounts have been

given elsewhere [43,44]. Stimuli were displayed on a 21’’ CRT

monitor with a 1024|768 pixel resolution and a 150 Hz refresh

rate, with a background luminance of 12 cd/m2. Receptive fields

were mapped using sparse noise and classical tunings were

determined by automated exploration. Intracellular responses

were compared for four full-field visual stimuli of 10 s duration

and increasing complexity (see Fig. 1): a) a drifting grating of

optimal orientation, direction, and spatial and temporal frequen-

cies (DG), b) the same optimal grating animated by a modeled eye-

movement sequence (GEM), c) a natural image animated by the

same virtual scanpath (NI), and d) dense binary white noise (DN).

The mean luminance and contrast of each movie were equalized.

Each movie was presented 10 times. For the NI condition, we used

a high definition natural image (2048|1536 pixels) animated with

a virtual eye movement sequence [43,44] (note that the size of

the image is larger than the size of the screen, so that no blank

region appears when the image is moved along the oculomotor

trajectory). White noise consisted of a dynamic sequence (13.3 ms

refresh period) of high spatial definition (50|50 pixels of side

length 0.39u) binary dense noise.

Numerical Models
All the simulations (including dynamic-clamp experiments) were

performed with the NEURON software [http://www.neuron.

yale.edu] except for the recurrent model which was been run

under NEST [45] using the PyNN interface [http://neuralen-

semble.org/PyNN]. A time step of dt~0.1 ms was used

systematically. We ran some simulations with dt~0.01 ms to

verify that our results were not dependent on the integration time

step (data not shown).

The postsynaptic neuron follows an integrate-and-fire equation

with conductance-based synapses whose time evolution is given by

tm
dV (t)

dt
~(Vleak{V (t))zgexc(t)(Eexc{V (t))zginh(t)(Einh{V (t)) ð3Þ
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with the resting membrane time constant tm~20 ms, the leak membrane

potential Vleak~{80 mV and the excitatory and inhibitory conductances

given in units of leak conductance Gleak~10 nS. When V (t) reaches the

spiking threshold Vthresh~{50 mV, a spike is generated and the

membrane potential is reset to Vreset~{60 mV for a refractory period

of duration tref~5 ms. Eexc~0 mV and Einh~{70 mV are the reversal

potentials for the excitatory and inhibitory exponential synapses

syn~ exc, inhf g whose dynamics follow

tsyn
dgsyn(t)

dt
~{gsyn(t)zDgsynSsyn(t) ð4Þ

where tsyn is the synaptic time constant with texc~3 ms and tinh~7 ms.

Dgexc and Dginh are the quantal synaptic strengths elicited by each

presynaptic spike and Ssyn(t) is the point process modelling the incoming

spike train. Dgexc and Dginh are chosen in order to satisfy the ratio

vgexcwzvginhw~3 where the brackets signify an average according

to Ssyn(t), and so that the effective resting potential is Vrest~{65 mV on

average. Identical results were been obtained for synapses with a finite rise

time (b-synapses). Parameters for the Hodgkin-Huxley model were

taken from [46].

The recurrent network is composed of 10000 excitatory and 2500

inhibitory neurons, sparsely connected, with a connection proba-

bility of 2% within each population and between the two

populations. The synaptic weights are Dgexc~4:0 nS and

Dginh~85:0 nS. Each neuron has a topographic position on a

cortical layer-like surface of 1 mm2, and connects to its neighbours

according to a Gaussian distribution of standard deviation

sc~0:15 mm. Periodic boundary conditions are used. Conduction

delays d are distant-dependent with d(x)~0:5z5x (ms) where x is

the distance between the two neurons expressed in millimetres. The

slope value of d(x) (giving a propagation speed of 0.2 mm/ms) is

taken from a previous in vivo study showing a lateral propagation

speed ranging dominantly between 0.1 and 0.3 mm/ms [42]. The

retinotopic drive was modelled as another thalamic layer-like

network facing the previous one where each neuron acts as a

Poisson process with a controlled amount of synchrony between the

firing. To mimic a retinotopic mapping, each cell in the thalamic

layer projects to the recurrent network in a topographically

organized manner following a Gaussian distribution of standard

deviation st~0:05 mm (Fig. 3). The connection probability from

the thalamic layer to the cortical layer is also 2%.

In some simulations, we used models based on morphologically-

reconstructed neurons from cat cortex, obtained from two

published reference studies (layer II–III of cat primary visual

cortex Douglas et al. [47]; layer VI of cat somatosensory cortex

Contreras et al. [48]), where biological details were given. The

three-dimensional morphology of the reconstructed neurons was

incorporated into the NEURON simulation environment, which

enables simulating cable equations in complex three-dimensional

structures [49]. In vivo-like activity was simulated in passive models

using a previously published model of synaptic bombardment at

excitatory and inhibitory synapses [50] (see this paper for details

about the parameters and numerical simulations). The density of

synapses was constant per unit membrane area according to

published morphological studies, and was (per 100 mm2): 60 for

dendritic AMPA synapses, 10 for dendritic GABAA and 20 for

somatic GABAA synapses. This gives 9947 AMPA and 2461

GABAA synapses for the layer II–III cell, and 16563 and 3376,

respectively, for the layer VI cell. The release rates, chosen to yield

synaptic bombardment consistent with in vivo measurements, were

nexc = 1 Hz and ninh = 5.5 Hz for AMPA and GABAergic

synapses, respectively (see details in [50]).

Correlation Generator
In order to produce spike trains with arbitrary temporal

correlations, we used the theory of cluster point processes

[23,51]. The presynaptic activity can be characterized by two

main features: on the one hand, the specific temporal structure

given by the spike train temporal auto-correlation form, and on

the other hand, the correlation strength which measures the

temporal coherence between individual presynaptic spike trains

(see [52] for a similar distinction). These two features can be

controlled separately in the spike train generator composed of a

population of presynaptic neurons following Poisson processes,

and firing together with a certain amount of synchrony. They

project to the postsynaptic neuron through different time delays,

randomly chosen from a specific distribution (Fig. 4). The

temporal structure is given by the delay distribution whereas the

global synchrony in the presynaptic neuronal discharge gives the

correlation strength. In our implementation, the presynaptic

population is assumed to contain N neurons (Nexc~4000 for the

excitatory population and Ninh~1000 for the inhibitory popula-

tion, except stated otherwise); at each time step it was decided

randomly whether or not some neurons will fire. The probability

was adjusted to give a mean firing rate n of the inputs. If so, kz1
neurons were chosen randomly to fire among the N constituting

the population. This method allows to have always kz1
synchronous neurons, and still an apparent Poisson discharge at

rate n for each presynaptic neuron taken individually. Note that

this gives back independent Poisson spike trains when k~0.

Correlation between excitatory and inhibitory neurons is imple-

mented in the same manner. The delays are then attributed to

each presynaptic spike train according to the chosen delay

distribution.

From point process theory, this can be seen as two nested point

processes. The first point process follows a Poisson process which

determines the cluster positions and the second one determines

randomly the position of kz1 points within each cluster according

to an arbitrary density probability function. The correspondance

between both representations is straightforward and the power

spectrum density can be computed analytically with the Neyman-

Scott equation [23,24,51]

c(v)~
Nn

2p
a(v)j j2(1zk p(v)j j2) ð5Þ

where p(v) is the Fourier transform of the delay distribution, kz1

is the number of synchronous neurons and a(v) is the Fourier

transform of the synaptic filtering. In Eq. 5, the factor k can also

be written k~rN{1 where r is the ratio of synchronous neurons

which does not depend anymore on N.

In this paper, we are interested in the power-law frequency-

scaling in the temporal power spectrum density (PSD). Eq. 5

relates the delay distribution to the PSD so that a power-law

behaviour at the conductance level needs a power-law scaling in

the delay distribution. Therefore, the delay associated with each

synapse was randomly chosen from a distribution proportional to
1

tb
exp ({

t

tmax
). The exponential term is added to avoid

oscillations in the PSD due to an abrupt cut-off [6] with

tmax~10 ms. The parameter b is varied over the simulations

and modulates the spread of temporal correlations. The

presynaptic neurons are synchronously active according to the

parameter k. The output frequency-scaling exponent (to be

defined below) measured in the PSD (Eq.5) is thus equal to

2(1{b).
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In vitro Preparation
In vitro experiments were performed on 350 mm-thick sagittal

slices from the lateral portions of rat occipital cortex. Wistar Rats,

4–6 weeks old (CNRS, Gif-sur-Yvette), were anesthetized with

sodium pentobarbital (30 mg/kg) before craniectomy and cortex

removal. The slices were maintained in an interface style recording

chamber at 34–35uC. Slices were prepared on a DSK microslicer

(Ted Pella, Redding, CA) in a slice solution in which the NaCl was

replaced with sucrose while maintaining an osmolarity of 314

mosM. During recording, the slices were incubated in slice

solution containing (in mM) 126 NaCl, 2.5 KCl, 1.2 MgSO4, 1.25

NaHPO4, 2 CaCl2, 26 NaHCO3, and 25 dextrose and aerated

with 95% O2-5% CO2 to a final pH of 7.4. After 30 minutes to

2 hours of recovery, intracellular recordings were performed in

deep layers (layer IV–VI) in electrophysiologically identified

regular spiking and intrinsically bursting cells. Micropipettes were

filled with 1.2–2 M potassium acetate and 4 mM KCl and had

resistances of 80–100 M after bevelling. The dynamic-clamp

technique [53,54] coupled with an Active Electrode Compensa-

tion (AEC) method that we developed and validated recently in vivo

and in vitro [24] was used to inject computer-generated

conductances in real neurons. The AEC method allows the

removal in real time of electrode noise from intracellular voltage

recordings. Dynamic-clamp experiments were run using the Real

Time-NEURON environment [55], which is a modified version of

NEURON 6.0 [49].

The dynamic-clamp protocol was used to insert the fluctuating

conductances underlying synaptic noise in cortical neurons using

the previous model, the post-synaptic neuron being now the

recorded neuron, similar to a previous study [56]. The injected

current is determined from the fluctuating excitatory and

inhibitory conductances as well as from the difference of the

membrane voltage from the respective reversal potentials.

Power Spectrum Analysis
Spikes were removed from the original traces and replaced by a

low-pass filtered version of the trace. To control the validity of this

procedure, we compared whenever possible the power spectrum

obtained from the interpolated trace with an identical trace

generated without threshold. In all cases we observed that injecting

a given conductance trace into a neuronal model and then

removing the spikes gave the same power spectrum as injecting the

same conductance in a neuronal model without spike threshold

(Fig. S2). The spectra were computed with the multi-taper method

[57], which allows a better estimation of the power-laws than the

standard periodogram methods. Results were similar when using

the Welch method and the Goertzel algorithm [58].

We then determined the frequency-scaling exponent by linear

regression on a log-log representation of the PSD, for the range

75–200 Hz. Similar results were obtained for lower bounds above

50 Hz, and higher bounds below 200 Hz. Estimation of the

scaling exponent from multifractal methods gave similar values.

For the in vitro data, we also estimated the frequency-scaling

exponent by fitting a generalized Lorentzian function [59], which

gave equivalent relative values.

We chose to use the linear fit for its simplicity, and because it is

easy to quantify the goodness of fit, and thus to assess the power-

law scaling over the frequency band chosen. In comparison, the

Lorentzian fit is very accurate when considering controlled models

where the cut-off frequencies can be easily found or computed, but

this model gave inaccurate results when applied to in vivo data

because it can not account for the low frequency regime, which is

strongly modulated by the stimulus. Finally, the multifractal

analysis gave us no control over the goodness of fit. In the case of

the recurrent network, the fit was performed between 75 and

200 Hz. Using narrower bands gives similar results. In the in vitro

measurements, the absolute values of the frequency-scaling

exponent displayed significant variations because of the available

scaling region. Our study focused on the modulation of the

frequency-scaling, rather than on absolute values, the relative

values of the frequency-scaling exponent are shown for in vitro

experiments and the corresponding models for each linear region

of the PSD. For the model studies, unless otherwise mentioned, we

systematically subtracted the value obtained for a classical Poisson

input. For the in vitro study, the reference was the frequency-scaling

exponent obtained with the input parameter b~0:1, averaged

over the different conditions tested. In this case, measuring the

relative values also removed the cell-to-cell variability of the

absolute values.

The total input conductance is reported to be about three times

the leak conductance Gleak in the anaesthetized cat [26]. This is

also what we used in our model and in the conductance injection

in vitro. As a consequence, the cut-off frequency of the synaptic and

membrane filtering are below the frequency band used for our

fitting (they did not exceed 75 Hz), and could not affect our

estimates (this point is futher discussed in the Results section).

Multifractal Analysis
The multifractal analysis characterizes the scaling behavior of a

signal x(t) [60]. For each point t0, the Hölder exponent H(t0) is

defined as the maximal value a such that there exists a polynomial

P(t), with Deg(P)ƒ a½ �, a positive constant C, and an interval

around t0 where for any t

x(t){P(t{t0)j jƒC t{t0j ja ð6Þ

This coefficient H(t0) reflects the scaling behaviour around the

point t0. The singularity spectrum D(h) is the Haussdorf

dimension of ft : H(t)~hg. It thus describes how the singularities

are distributed in the signal. A particular example is the self-similar

process (also called monofractal), where D(h)=0 only at one point

H , where D(H)~1. The practical estimation of the singularity

spectrum is made difficult by the finite size of the signal, and by its

discrete nature. However, the wavelet formalism allows a robust

estimation of t(q), which is the Legendre transform of the

singularity spectrum:

D(h)~ min
q
fqh{t(q)g ð7Þ

In the case of a monofractal/scale-invariant process, t(q)~qH{1,

H being its unique Hölder exponent. This corresponds to a

fractional Brownian process. Note that H is related to the PSD slope

which is equal to {2H{1. The curvature of t(q) quantifies the

deviation from monofractality. The slope and the curvature are

respectively the first and second moments of the singularity

spectrum. We used an algorithm based on wavelet leaders [20,61]

which directly estimates these two values.

Fano Factor and Power-Law in the Spiking Activity
Fano factors and power-laws on these Fano factors were

measured as in [6]. To compute the Fano Factor for a given time

bin, we counted the number of spikes in each time bin and took

the ratio of the spike-count variance to the mean spike-count. The

power-law was estimated by computing this Fano Factor over a

large range of time bins. This function was then represented in a

log-log scale, and the slope of the curve was estimated by linear

regression. This gives the frequency-scaling exponent of the
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spiking activity through the Fano Factor F (T)!Ta where T is the

time bin and a the scaling exponent.

Supporting Information

Figure S1 Effect of heterogeneous synaptic weights and synaptic

waveform on the power law frequency scaling exponent. (A–B) Vm

frequency-scaling exponent changes for different input frequencies

n and for heterogeneous synaptic strengths. The synaptic strengths

are randomly distributed for each incoming synaptic spike train

according to a Gaussian distribution whose standard deviation is

half the mean value in this case. These controls were performed

with integrate-and-fire neurons (panel A) and Hodgkin-Huxley

neurons (panel B). The synchrony percentage was kept a 6% and

there was no correlation between excitatory and inhibitory

synaptic inputs. Error bars are the standard deviation over the

trials. The bold line represents the average across cells and trials.

(C–D) Variation of the value of the frequency-scaling exponent at

the membrane potential level for excitatory input only as a

function of the parameters bexc and for b-synapses (r = 3%). (C)

Illustration of the PSD modulation on a log-log scale for different

values of the parameter bexc ranging from 0 (light blue) to 1 (dark

blue). In the inset, a stereotypic synaptic time course is represented

(with a time rise of 1 ms). (D) Variation of the output frequency-

scaling exponent with the bexc parameter.

Found at: doi:10.1371/journal.pcbi.1000519.s001 (0.41 MB EPS)

Figure S2 Illustration of the spike filtering algorithm for neuron

models with and without spiking mechanism. (A) Injection of

correlated synaptic input to a HH model. Blue: raw trace; Red:

after spike filtering. (B) Power spectra density corresponding to

panel A. (C) injection of the same synaptic input in a COBA model

without threshold (green), superimposed to the HH-spike-filtered

trace plotted in panel A. (D) Power spectra density of the the two

traces displayed in panel C: COBA without threshold and HH

with spike filtered.

Found at: doi:10.1371/journal.pcbi.1000519.s002 (0.97 MB EPS)

Figure S3 Influence of the different integrative time constants on

the PSD frequency scaling. (A) Vm power spectra for different

levels of correlation in the input (blue: Poisson input; red:

correlated input with k = 6% and b= 0). The level of conductance

is low in this condition (Gtot = 0.23Gleak). The dotted coloured lines

indicate the linear fits over the high frequency region delimited by

the vertical dashed gray line. (B) same PSD, but for a very high

conductance state (Gtot = 12Gleak). The four fits correspond to fit in

different frequency bands, for the two PSDs. To illustrate more

precisely the differential effect of the conductance state and of the

input correlations on the frequency-scaling exponent, we show

several examples of Vm power spectra for two different levels of

global conductance regime, and two different binh = bexc param-

eters. In the low conductance state (panel A), the power spectrum

is composed of two linear regions separated by a unique cut-off,

which is determined by the time constants of the synaptic and

membrane filtering. In the very high conductance state (panel B),

these two time constants are clearly different, so the power

spectrum shows three linear regions separated by two cut-offs.

Very large (and surely not plausible in biological conditions)

changes of the conductance state thus displaced the second

frequency cut-off, but still did not affect the relative slope in the

linear regions. Decreasing the b parameter increases the slope over

both frequency bands and relative changes of the frequency-

scaling exponent have the same magnitude in these different

regions. This shows that the relative modulation observed is not

dependent on the specific frequency band chosen to estimate the

PSD slope, since it can be observed over a large range of

frequencies. Furthermore, this figure illustrates the differential

effect of the conductance state, and of the correlation state, on the

power spectrum. Opposite to the latter, the former does no affect

the scaling exponent.

Found at: doi:10.1371/journal.pcbi.1000519.s003 (0.52 MB EPS)

Table S1 Frequency-scaling exponents for detailed neuron

models. Neuron models were obtained from neuronal morphol-

ogies reconstructed from a layer III cell (upper table) and a layer

VI cell (lower table) of the cat cerebral cortex (see methods). The

frequency-scaling exponent is computed for different synaptic

input firing rates and different levels of synchrony. Three levels of

incoming synaptic activity have been considered, following

(Destexhe & Paré, 1999) : a high-conductance state (HC) with

nexc = 1 Hz, ninh = 5.5 Hz; a low-conductance state (LC) with

nexc = ninh = 0.5 Hz and a very low-conductance state (VLC) with

nexc = ninh = 0.1 Hz. Each condition was performed with two levels

of synchrony between synaptic spike trains, r = 0% and r = 1.5%

respectively. Frequency-scaling exponents barely changed with

increasing firing rate for both uncorrelated and correlated inputs,

for both cells. However, the frequency-scaling exponent was

affected by the level of synchrony, as expected from our previous

results. These simulations show that the relative modulations of the

scaling exponent are mostly due to correlation changes, while

conductance changes have a negligible effect.

Found at: doi:10.1371/journal.pcbi.1000519.s004 (0.01 MB PDF)
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47. Douglas R, Martin K, Â Whitteridge D (1991) An intracellular analysis of the

visual responses of neurones in cat visual cortex. J Physiol 440: 659–696.

48. Contreras D, Destexhe A, Steriade M (1997) Intracellular and computational

characterization of the intracortical inhibitory control of synchronized thalamic

inputs in vivo. J Neurophysiol 78: 335–350.

49. Hines M, Carnevale N (1997) The neuron simulation environment. Neural

Computation 9: 1179–1209.
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8 Information transmission under ongoing activity

Ongoing activity is problematic for understanding how information is encoded and transmitted
in the brain. Its spontaneous, irregular and chaotic nature observed in vivo appears incompati-
ble with response reliability and time coding (Banerjee et al., 2008). In a seminal experiment,
Salzman et al. (1990) showed how the response of a monkey to a perceptual judgement of
motion direction can be biased by cortical microstimulations in vivo. Small pulses of current
were injected during the task to perturb the decision of the animal. The decrease of its perfor-
mance shows how sensitive the system is. Similarly, the work of Li et al. (2009) showed how a
small pulse of current injected in the thamalus could drastically change the dynamical regime
of the cortex. This over-sensitivity of the system to perturbations is striking, and supports the
chaotic nature of the spontaneous activity.

To transmit information, the classical way to cope with this situation is to consider the chaotic
background as noise, uncorrelated with the simulation, and average over many responses to
get rid of this “artefact” in a rate-based coding strategy. This make sense if the cortex is using
population codes to encode information: a neuron itself is unreliable and may not be efficient
at encoding information, so averaging over a population of cells doing the same computations
may help to extract the informative part of the signal, enhancing the reliability of the code,
and dealing with the noise. This linear model of a deterministic signal corrupted by a noise
component justifies, in this context, a code based on averaging across time and/or neuronal
assemblies (Shadlen and Newsome, 1998) and has been applied at different scales of integra-
tion ranging from intracellular recordings (Azouz and Gray, 1999) through optical imaging
(Arieli et al., 1996), to LFP recordings (Deweese and Zador, 2004). Recent experimental re-
sults suggest that sensitivity of the system, due to the chaotic nature of the ongoing activity,
should be an argument in favour of more rate-based codes, able to cope with the situation
(London et al., 2010).

8.1 Ongoing activity and information propagation

Information propagation is too often considered from a feed-forward point of view, explained
in Part I: in spite of the dominance of recurrent connections at the anatomical level, most
models of cortical dynamics assume that layers of neurons are connected and arranged, and
one usually studies the propagation of external inputs across the layers (Reyes, 2003, Dies-
mann et al., 1999). Nevertheless, ongoing activity challenges the classical feed-forward view
of a silent brain waiting for incoming sensory inputs. This activity should more be seen as
an internally generated filter selecting some particular inputs, by creating a competition be-
tween feed-forward sensory input streams and recurrent interactions. The idea of the ongoing
activity as a filter comes from the fact that, for example, 94% of the synapses bombarding a
neuron in V1 come from the cortex, and only 6% from the feed-forward thalamic pathway.
Despite the fact that thalamo-cortical synapses are more effective and stronger than cortico-
cortical ones (Gil et al., 1999), the cortex is a very recurrent and self-sustained dynamical
system, wandering on the high-dimensional attractor of its own, self-generated ongoing ac-
tivity. Feed-forward sensory inputs perturb this dynamic, but the fine interplay between both
should be more carefully understood. In this spirit, the theory of predictive coding by Rao
and Ballard (1999) can be applied to the relationship and the recurrence between cortex and
thalamus. The cortex could build internal predictions and by gating the thalamic inputs with
the numerous projections sent back from layer 6, may encode only the differences between
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information which is expected and the sensory inputs. For evidence of the role of cortical
feedback on the thalamus, see the work of Andolina et al. (2007), which shows how reliability
in the thalamus is driven by the feedback sent by the cortex. Indeed, from an information
transmission point of view, this would be more efficient to code only the differences between
what is expected by the system, and what is coming from the sensory modalities. Such a cod-
ing scheme has been found in the electro sensory lobe of the Electric Fish (Sawtell and Bell,
2008), and in the retina (Hosoya et al., 2005), but evidences in cortex are still unclear.

Information propagation in recurrent networks is highly problematic. In balanced random
networks (see Part I), one can observe that the ongoing “noise” generated by the recurrent
interactions tends to disrupt the structure of the external signal. For example, Figure 13, taken
from Vogels and Abbott (2005), shows that when an increase of firing rate is presented to a
sub-population of cells in a random balanced network of conductance based integrate-and-fire
neurons, with an ongoing activity near 10 Hz, only the cells that are directly stimulated keep
a trace of the input. The “second” layer, i.e. neurons receiving inputs from these directly
stimulated cells, is almost insensitive to the primary input. The only way the authors could
achieve signal propagation was to artificially increase the strength of the synapses along the
pathway, and build a strong feed-forward structure within the recurrent network. However,
this led the network into pathological states, such as the Synchronous Regular regime. More
and more evidence suggests that ongoing activity should be taken into account in thinking
about new computational paradigms (see Ringach (2009) for a review).

Figure 13: Adapted from Vogels and Abbott (2005). Signal propagation. a) Network dia-
gram showing the layers of a candidate pathway. Input (blue) is fed into the network through
strong synapses onto layer 1 neurons (red). In this and the following diagrams, layers 1– 6
are indicated by the colours green, yellow, dark blue, orange, and light blue, respectively.
The white-filled circles denote non pathway neurons of the network. For this figure, layer
0 activity consists of a 30 ms pulse of activity at ' 180 Hz. b) In a network with uniform
excitatory and inhibitory synaptic strengths and neuronal parameters, no propagation occurs.
c) Depolarization of pathway neurons by 15mV fails to induce propagation, although firing
rates in all affected cells increase. e) Strengthening of pathway synapses by ' 10-fold results
in signal propagation and spreading.

8.2 Reliability as a function of the stimulus

Plenty of evidence shows that brain responses are, from trial to trial, rather “noisy” and un-
reliable. If the exact same stimulus is presented twice to the animal, spiking responses can
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with difficulty be compared, and cross-correlations within trials are rather low. Nevertheless,
unpublished work of P. Baudot et al (submitted to J NeuroPhysiol) in Frégnac’s lab at UNIC,
has demonstrated that the response variability of the same neuron in V1 depends on the stim-
ulus. In Figure 14, one can see the spiking and subthreshold responses of a V1 neuron when
stimulated in its receptive field by four distinct stimuli: a drifting grating, a drifting grating
animated with a model of eye movement reproducing drifts, tremors and saccades, a natural
image animated with eye movement, and dense noise. From trial to trial, variability of the
neuron depends on the stimulus. For a drifting grating, responses are rather constant in terms
of firing rate, but the exact times of spike occurrences are not reliable. On the contrary, for a
natural image with eye movements, huge and very reproducible spike times can be observed.
Similar results have been replicated in Haider et al. (2010), which shows that combined stim-
ulation of the classical receptive field of the neuron and its surround increases the reliability
and the sparseness of the responses of V1 pyramidal neurons.

Figure 14: Intracellular recordings from a V1 neuron in an anaesthetized cat, presented with
four different stimuli: from top to bottom; a sinusoidal grating, the same animated with simu-
lated eye movements, a natural image with simulated eye movement, and a dense noise. Each
time, the cell response is recorded 10 times, and spiking responses are shown for the 10 dis-
tinct trials. Membrane potentials for the ten trials are superimposed and the average, for each
condition, is plotted in red. From Baudot et al, (2010).

These experimental results indicate that what is called “noise”, i.e. the trial-to-trial variability
of neuronal responses in the visual cortex, is modulated by the general context of full field
input statistics sampled by the subthreshold synaptic integration field of the neuron. Dif-
ferent inputs to the same system can trigger different kinds of responses and dynamics and,
in conjunction with the information transmission problems in recurrent networks, it raises the
question of how do we need to stimulate such balanced random networks in order to maximize
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information transmission. Are some inputs more appropriate than others?

8.3 Main results

The study presented in the following article is a theoretical attempt to better understand how
stimulus-dependent reliability can emerge in simple and generic large-scale recurrent net-
works of spiking neurons. Does the reliability depend on the stimuli, and if so, what are
the key properties of the stimuli triggering the reliability? Since several studies have shown
how ongoing activity, i.e. “noise” can emerge from the recurrent cortical connectivity (van
Vreeswijk and Sompolinsky, 1996, 1998), it appears logical to model the trial-to-trial vari-
ability as a product of the recurrent connectivity. To relate these models to our experimental
results, we will raise two issues concerning the transmission of information within these net-
works:
– Is the reliability of the information transmission stimulus-dependent?
– What kind of stimulus maximizes the efficiency of information transmission?
I designed the experiments and the paradigm in collaboration with O. Marre, and we worked
together equally on the project.
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Irregular ongoing activity in cortical networks is often modeled as arising from recurrent connectivity. Yet it remains unclear to what
extent its presence corrupts sensory signal transmission and network computational capabilities. In a recurrent cortical-like network, we
have determined the activity patterns that are better transmitted and self-sustained by the network. We show that reproducible spiking
and subthreshold dynamics can be triggered if the statistics of the imposed external drive are consistent with patterns previously seen in
the ongoing activity. A subset of neurons in the network, constrained to replay temporal pattern segments extracted from the recorded
ongoing activity of the same network, reliably drives the remaining, free-running neurons to call the rest of the pattern. Comparison with
surrogate Poisson patterns indicates that the efficiency of the recall and completion process depends on the similarity between the
statistical properties of the input with previous ongoing activity The reliability of evoked dynamics in recurrent networks is thus
dependent on the stimulus used, and we propose that the similarity between spontaneous and evoked activity in sensory cortical areas
could be a signature of efficient transmission and propagation across cortical networks.

Introduction
When injecting fluctuating current inputs into the soma of a
neuron recorded in vitro, the spiking response is highly reliable
(Mainen and Sejnowski, 1995). Such results, however, have been
difficult to reproduce in vivo (Holt et al., 1996). The reason for
this discrepancy is that much of the response variability observed
in vivo seems to originate from the background activity (Arieli et
al., 1996; DeWeese et al., 2005). Even in the absence of external
drive, this ongoing neuronal activity is highly irregular (Timofeev
et al., 2000), although the discharge statistics are still a matter of
debate (Kenet et al., 2003; Fiser et al., 2004; Goldberg et al., 2004).
Generic recurrent networks are a good model for understand-
ing the possible interactions between ongoing and evoked ac-
tivity in neocortical networks. Characterized by large, sparsely
connected, excitatory and inhibitory populations, they can
display a stable, self-generated regime called asynchronous
irregular (AI) (van Vreeswijk and Sompolinsky, 1996; Brunel,
2000; Vogels et al., 2005; El Boustani and Destexhe, 2009a), which

resembles the spontaneous activity observed in vivo. The central
functional issue, as yet unsolved, is to characterize the sensitivity
of these networks to external inputs (Destexhe and Contreras,
2006; Banerjee et al., 2008).

These recurrent AI networks are highly sensitive to small per-
turbations. As a consequence, propagation of either an increase
in firing rate (Vogels et al., 2005) or a pulse of synchronized
activity (Aviel et al., 2003; Mehring et al., 2003) is severely im-
paired by the ongoing activity, and in general this high variability
and instability presents a severe challenge to information trans-
mission or processing in recurrent networks. To achieve reliable
signal propagation, these earlier studies introduced specific con-
straints in the network structure, either by selectively and sub-
stantially increasing synaptic weights (Vogels et al., 2005) or by
adding connections (Mehring et al., 2003; Kumar et al., 2008)
along a predetermined propagation path. Even in this latter case,
the synfire chain stimulation can induce “synfire explosions,”
which can subsequently silence the network activity.

While previous studies adapted the network connectivity to im-
prove the transmission of the chosen (a priori) input patterns, we
explored the converse approach: leave the network structure un-
changed and find the activity patterns that are better transmitted and
sustained by the network. Several experimental studies have shown a
similarity between spontaneous and evoked cortical activity
(Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al., 2004). From the
theoretical point of view, the irregular and sustained patterns found
in ongoing activity are by definition highly compatible with the re-
current architecture of the neocortical network. We have designed a
new stimulation paradigm, in which we drive part of the network
with temporal pattern segments extracted from the recorded ongo-
ing activity of the exact same network. This gives inputs which mimic
the spontaneous activity of the network model. We refer to this as the
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“frozen paradigm.” In this article, we show using simulations that
our paradigm produces efficient transmission, which is preserved
over a broad range of parameters. To investigate the factors affecting
transmission efficiency in the network, we performed further simu-
lations with control, surrogate stimuli. Finally, we discuss the biolog-
ical relevance of this paradigm.

Materials and Methods
Spiking network model
Neuron model. Networks are composed of 10,000 leaky integrate-and-fire
neurons. Each neuron has membrane time constant �m � 20 ms, and resting
membrane potential Vm � �60 mV. When Vm reaches the spiking thresh-
old Vthresh � �50 mV, a spike is generated and the membrane potential is
held at the resting potential for a refractory period of duration �ref � 5 ms.
Synaptic connections are modeled as conductance changes, resulting in a
model similar to the Conductance-Based, Integrate and Fire models case in
the study by Vogels et al. (2005):

�m

dV�t�

dt
� �Vrest � V�t�� � gexc(t)�Eexc � V�t��

� ginh(t)�Einh � V�t��. (1)

Reversal potentials are Eexc � 0 mV and Einh � �80 mV, and synaptic
activation is modeled as a conductance step g3 g � �g followed by
exponential decay with time constants �exc � 5 ms and �inh � 10 ms. The
integration time step of our simulations is 0.1 ms (reducing the time step
to 0.01 ms was found to produce no qualitative change in the network
behavior), and synaptic delays are set to 0.1 ms.

Network connectivity. The network is composed of 8000 excitatory and
2000 inhibitory neurons, sparsely and randomly connected, with a con-
nection probability of 2% (Vogels et al., 2005), independent of the iden-
tity of the target. While this connectivity ratio is at odds with anatomical
data on neocortical connectivity [which shows a connectivity ratio of
around 10%, and a dependence on the target cell type (Binzegger et al.,
2004)], it allows a realistic pattern of activity to be generated and sus-
tained, while higher connectivity ratios fail to do so (Vogels et al., 2005).
We also note that for models with dynamic synapses (Markram and
Tsodyks, 1996), due to the depression of synaptic strength of intracor-
tical excitatory synapses which is dominantly reported in vitro
(Thomson and West, 1993), there are fewer effective synapses than in
the anatomical data, making the effective connectivity closer to that
used in our simulations.

Synaptic parameters and network regime. Network global states are
defined as either synchronous or asynchronous (population view-
point) and as either regular or irregular (neuron viewpoint). For
Figures 1– 4, the network is set to an asynchronous irregular state
(Brunel, 2000) at 13 Hz with a mean interspike interval (ISI) coefficient
of variation (CV) of 1.57. Synaptic parameters are as follows: �gexc � 6 nS
and �ginh � 61 nS. Weights are drawn from Gaussian distributions
N( gexc, gexc/3) and N( ginh, ginh/3), with negative values discarded and
then redrawn. To initiate the self-sustained activity, 5% of the cells re-
ceive an initial 50 ms burst of activity at 100 Hz.

Measures. To quantify the similarity between the “free-running” and
“target” activity patterns, we calculated the recall index defined as the
normalized cross-correlation of the target and actual spike trains
(Aertsen et al., 1989) for a random sample of 500 cells, for zero phase
delay and a time bin of 5 ms. We consider two spike trains of N � 500
neurons, binned with a time bin �t equal to the refractory period of the
neuron (here, �t � 5 ms), obtained during two different trials. S1 and S2

are two matrices of size N � Nbins, with Nbins � T/�t, T being the length
of the spike trains. Note that S are binary matrices: for each (i, j) � N �
Nbins, Sij � {0, 1}. The recall index �12 is given by the following formula:

�12 �
�S1S2� � �S1��S2�

��S1�(1 � �S1�)�S2�(1 � �S2�)
, (2)

where �� denotes the average number of filled bins per matrix. Since S is a
binary matrix, we are sure that �S� 	 1.

To estimate the reliability (reproducibility) of the neural responses for
different kinds of stimuli, we computed the mean of the paired normal-
ized cross-correlations between the trials (n � 10) (Schreiber et al.,
2003), with the same time bin. Error bars were computed by using dif-
ferent stimulation patterns (n � 10).

Signal-to-noise ratio for the binned spiking activity. We chose a measure
which can be directly related to the reliability and mean firing rates
previously estimated. The signal S was given by the mean firing rate m
multiplied by the time bin 
t: S � m
t. The noise N was given by the
standard deviation of the responses to the same stimulation. These values
were estimated with the same time bin as the reliability to ensure a straight-
forward relationship between the two. If Xi

t � {0; 1} represents the binned re-
sponse at time t, for the ith trial, the noise N is such that the following is true:

N2 � � 1

n�i �Xi �
1

n�
j

Xj� 2�
t

, (3)

where n is the number of trials. Remarking that, since the bin size is small,
Xi � Xi

2, and that �Xi�t � S, we obtain the following:

N2 � �1 �
1

n� �S � C�, (4)

where C � �XiXj�t. According to Palm et al. (1988), C � rS(1 � S) � S 2,
where r is the reliability estimated above as the normalized cross-
correlation between trials. The signal-to-noise ratio (SNR) is then the
mean over the standard deviation, such that the following is true:

SNR2 �
S

1 � r�1 � S� � S
. (5)

Note that we drop the (1 � 1/n) factor, which will affect all the estima-
tions in the same manner, and will reach one for an infinite number of
trials. This is not problematic for our comparative study.

Distance between spike trains. to test the noise resistance, we used the
Victor–Purpura distance (Victor and Purpura, 1996), which has the ad-
vantage of avoiding any binning artifact. Briefly, costs are assigned to
three elementary operations over spike trains: changing the timing of a
spike from ta to tb (cost � q�ta � tb�), adding a spike (cost � 1), and
deleting a spike (cost � 1). The distance between two spike trains SA and
SB is then defined as the least costly way of combining these three ele-
mentary operations to change spike train SA into spike train SB. This
distance is dependent only on q, and this parameter is the cost for shifting
the spikes when matching two spike trains. If q � 0, shifting spikes has no
effect on the measure, so only the number of spikes will influence the
distance between the two spike trains. Increasing q gives more impor-
tance to the precise spike times relative to their number. In our study, we
estimated the distance between the two spike trains emitted by a same cell
in response two different stimuli (the real pattern vs the jittered version
of it), and averaged this estimation over n � 500 cells.

Simulator. All simulations were performed using the NEST simulator
(Diesmann and Gewaltig, 2001) version 1.9 (http://www.nest-initiative.
uni-freiburg.de), using the PyNN interface (Davison et al., 2008)
(http://neuralensemble.org/PyNN). The code for the model is freely
available from ModelDB (http://senselab.med.yale.edu/ModelDB/) and
on the UNIC website (http://www.unic.cnrs-gif.fr).

Neural field model
The model consists of N local “neural fields” defined by inputs hi and outputs
Si � tanh( ghi). Their dynamics are given by Equation 1, above. All results
given in this paper used N � 2000 neural fields. The frozen paradigm was
applied by imposing the values of the hi of a subset of neural fields.

Results
Convergence of the network activity to a target
activity pattern
The frozen paradigm is implemented as follows: We divide our
recurrent network into two populations. The selection of which
neuron belongs to which population is made at random and the
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connectivity of two neurons is indepen-
dent of which populations they belong to.
We first record a spontaneous pattern
across the whole network (both popula-
tions) and then, while the spontaneous ac-
tivity is ongoing, we force the neurons of
one population to replay the sequence of
spontaneous activity previously recorded
(see Fig. 1a). We then measure the extent
to which these clamped, or frozen, cells
influences the free-running neurons to re-
play the spontaneous pattern previously
recorded (see Fig. 1a). Replay of the re-
corded pattern by the free-running neu-
rons is then equivalent to the recall of that
pattern in the network.

We applied our paradigm to a sparsely
connected, recurrent network of 8000 ex-
citatory and 2000 inhibitory integrate and
fire neurons (see Materials and Methods).
The set of parameter values was that used
by Vogels et al. (2005), except that the
weights are drawn from Gaussian distri-
butions instead of being all equal. The net-
work settles in an asynchronous irregular
regime in which it generates self-sustained
activity with a mean rate of 13 Hz and a
mean ISI CV of 1.57. It has been shown
that, although the activity of this network
appears very irregular on small time
scales, where it cannot be distinguished
from stochastic behavior, it can exhibit
more coherent behavior at large time
scales, where the dimensionality of the at-
tractor can be reduced (El Boustani and
Destexhe, 2009b). Figure 2 shows an ex-
ample of the dependency on initial condi-
tions in this network model: two initially
identical trajectories quickly diverge after
a perturbation as small as a single spike
elicited in the same neuron. This diver-
gence is characteristic of a chaotic net-
work, and has already been observed and studied in several
recurrent network models [see also Sompolinsky et al. (1988) and
van Vreeswijk and Sompolinsky (1998, 2005)].

When 50% of the neurons are forced to replay a spontaneous
pattern recorded previously (Fig. 1a, blue), the spiking activity of
the free-running neurons (yellow) converges reliably to the target
activity (red): repetitions of the same stimulation elicit temporally
precise and reproducible spikes characterized by their temporal
alignment across repetitions (Fig. 1b). The subthreshold membrane
potentials Vm (Fig. 1c) of the free-running neurons closely follow the
target activity waveforms (red) as soon as the input-recipient popu-
lation is frozen. Note also the immediate reduction in the stimulus-
locked variance following the “freeze” onset.

We quantified these observations with two measures. The re-
call index is a measure of how closely the free-running neurons of
the network reproduce the target pattern (the previously re-
corded segment of spontaneous activity). It is defined as the
cross-correlation between the target activity pattern and the re-
sponse of the free-running neurons. The reliability is a measure
of the variability of responses during frozen stimulation: the
lower the variability the higher the reliability. It is defined as the

mean cross-correlation between pairs of responses to the same
frozen stimulus (see Materials and Methods for full details). Fol-
lowing the onset of stimulation, the recall index increases, within
a time of �50 ms that is independent of the proportion of frozen
neurons, to a steady-state value (Fig. 3), reflecting a rapid con-
vergence of the free-running activity to the target pattern. The
recall index decays equally rapidly following the end of the stim-
ulation. The firing rate averaged over the neuronal population
(Fig. 3a, bottom panel) remains constant over time. The frozen
stimulation thus preserves the statistics of the ongoing activity
while eliciting a reproducible and faithful replay, extended over
the full network, of the target pattern.

The steady-state value of the recall index measure is depen-
dent on the proportion of frozen neurons (see Fig. 3b). As ex-
pected, the recall index increases when the proportion of frozen
neurons increases, whether these are excitatory or inhibitory, ex-
cept in a region where the low proportion of inhibitory free-
running neurons evokes a transition to a “synchronous regular”
regime or a quasisilent state, which are insensitive to the stimulus.
The proportion of frozen inhibitory neurons affects the recall
index more than does that of frozen excitatory neurons, which is

a

b

c

Figure 1. a, Conceptual schema of the “frozen paradigm.” A spontaneous pattern is recorded (top panel), and then a subset of
neurons (labeled “frozen”; blue neurons and blue spikes) is forced to replay part of the pattern. We then examined whether the
remaining, free-running neurons (yellow spikes) reliably reproduce the other part of the spontaneous pattern, which we label the
“target” pattern (red spikes) (see Results for details). b, Raster plot of responses of free-running neurons to the frozen stimulation.
Each white or gray band represents the activity of one free-running neuron. Short vertical lines represent spikes. The red spikes are
from the target pattern, and each row of black spikes represents a different trial with the same stimulation pattern but a different
initial state of the network. c, Superimposed Vm traces of responses to the same frozen stimulation, for one free-running neuron.
The red trace indicates the target activity.
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probably related to the higher weights of inhibitory synapses in
this model (�gexc � 6 nS, �ginh � 61 nS; see Materials and Meth-
ods). The recall index is insensitive to the particular pattern cho-
sen for stimulation and to the initial conditions (ANOVA, p � 0.5
for both pattern and initial condition dependencies), with a stan-
dard deviation approximately constant over the whole bidimen-
sional plot shown in Figure 3b (0.006 on average). This absence of
sensitivity to the timing of the stimulation relative to the ongoing
activity is probably a consequence of the irregularity of the net-
work activity: there is no clear oscillatory behavior which could
induce a phase dependency, and our stimulation is not related to
a particular frequency to which the response would lock.

To check whether the frozen stimulation always makes the
network converge to the target pattern, we compared the values
of the recall index and of the reliability for the same stimulation
repeated several times. Convergence to a different pattern would
lead to a reliability significantly higher than recall index, but we
did not find any significant difference ( p � 0.4, t test, n � 10),
proving that the activity converges in all cases to the target pat-
tern. Our results thus demonstrate that the frozen stimulation
induces robust convergence for a large enough frozen population.

The importance of the recurrent architecture in this behavior
was confirmed by a control experiment in which the connections
between free-running neurons were cut and a stochastic current
of equivalent mean amplitude injected into the neurons (Fig. 3c).
The injected current is independent over all neurons. The mean
firing rate received by each neuron is thus preserved, while the
interactions between stimulation and recurrent architecture are
suppressed. For a frozen proportion of 50%, the reliability drops
from 0.47  0.007 (SD) to 0.09  0.005, indicating that the
free-running activity in the intact network during frozen stimu-
lation is not dominated by the frozen drive, but results from a

dynamic cooperation between the frozen
units and the recurrent connections.

Influence of input temporal structure
on reliability
It could be argued that the reliability of
the responses could have been obtained
with any other imposed stimulation,
whatever its statistics. We thus com-
pared the frozen stimulation with surro-
gate stimulations having the same
number of spikes, but a shuffled temporal
structure. Several different surrogates
were compared: a first series consisting of
temporally “jittered” patterns with stan-
dard deviation of the jitter ranging from 5
to 25 ms; and a second series consisting of
Poisson spike trains. In “local Poisson”
(LP) stimulation, the mean firing rate of
each neuron equals that of the same neu-
ron during the reference, frozen pattern
(equivalent to an infinite jitter). In “syn-
chronous Poisson” (SP) stimulation, all
neurons have the same firing rate, equal to
the mean rate of the spontaneous activity,
but the spike trains are correlated (Kuhn
et al., 2003), to match the synchrony level
of spontaneous activity. Finally, “global
Poisson” (GP) stimulation matches only
the mean firing rate of the spontaneous
activity, but not the synchrony. Note that

all these controls have approximately the same number of spikes
as the reference spontaneous pattern. These different surrogate
patterns represent a progressively increasing deviation from
spontaneous activity statistics, while keeping first-order statistics
unchanged.

For this comparison we chose a level of frozen neurons (50%)
at which each free neuron receives equal numbers of connections
from frozen and free neurons. As shown in Figure 4a, the more
the stimulation statistics deviate from those of spontaneous ac-
tivity the lower is the reliability. This difference is significant for
jitter of 15 ms and greater ( p 	 0.001) and for LP and GP ( p 	
0.0001), being largest for the global Poisson process. For the
global Poisson, the reliability drops by 17%. However, the level of
reliability is the same for synchronous Poisson as for the frozen
stimulation. The reliability modulation is accompanied by a modu-
lation of the mean evoked firing rate in the free running network,
as can be seen in Figure 4b: the mean firing rate drops signifi-
cantly ( p 	 0.0001) for local (18%), synchronous (43%), and
global (34%) Poisson surrogate patterns.

To synthesize these results, we measured the SNR of the spik-
ing responses, defined as the mean firing rate divided by the
standard deviation of the firing rate responses over trials (see
Materials and Methods). This takes into account both the re-
liability and the mean firing rate of the output. This SNR is sig-
nificantly higher for the spontaneous stimulation than for the
surrogate Poisson stimulations (see Fig. 4c) [decrease of 27%
(SP), 14% (LP), and 26% (GP)]. In the case of the local and global
Poisson stimulations, the difference in SNR is produced by both
the reliability and the mean firing rate drops. But in the case of the
synchronous Poisson stimulation, the reliability is comparable to
that of the spontaneous pattern, and the lower, but still signifi-
cant, difference originates in the lower firing rate. Together, these

a

b

Figure 2. a, Raster plot of five neurons during two runs of activity (red and black) in the same network, starting with the same
initial condition. The black run is perturbed by the addition of one extra spike in one neuron at 500 ms (dotted line, blue inset in the
bottom row). b, Time course of the normalized cross-correlation between the two runs of activity. Correlation is computed with a
time bin equal to the refractory period of the neurons, and measured on a sliding window. Note that this induces a smoothing of the
estimated correlation. The vertical dotted lines indicate the time at which a perturbation (one extra spike) was artificially added to
one of the neurons in one of the runs, inducing a fast drop of the correlation. The inset shows the mean firing rate for the two
conditions as a function of time.
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measures imply a larger degradation in signal transmission, the
more the input statistics deviate from the spontaneous statistics.
Thus, for the same number of spikes, the forced replay of spon-
taneous ongoing patterns seems to induce a better signal trans-
mission and recall.

We have explored how the input structure influences the out-
put reliability and mean firing rate. To compare this influence to
that of the mean input firing rate, we explored the effects on mean
activity (Fig. 5a) and reliability (Fig. 5b) of independently varying
the mean excitatory and inhibitory firing rates of the global Pois-
son stimulation. The combination of high excitatory and low
inhibitory stimulation rates produces a high mean firing rate in
the free-running units, but a low trial-to-trial reliability. In con-
trast, low excitatory but high inhibitory stimulation rates induce
a highly reliable response, but with a very low mean firing rate.
We empirically fitted this inverse relationship between reliability
and mean activity of the free running units by the following
power law:

Rate� � Reliability� � K � �Spike count) (6)

(r 2 � 0.95), where the spike count is the total number of spikes in
the imposed stimulation pattern, summed over all the frozen
neurons, and K is a constant (� � 0.46, � � 1.48, K � 11.59).

Figure 5c represents the “iso-spike count” curves obtained
when plotting reliability against mean firing rate. When com-
pared with the Poisson surrogate stimulations, the particular
structure of the imposed spontaneous pattern seems to be better
adapted to the network connectivity: to reach similar levels of

both reliability and response strength as observed for spontane-
ous statistics (Fig. 5c, black cross), the use of global Poisson stim-
ulation would require a large increase in the spike frequency
imposed on the frozen neurons (175% of the spontaneous rate,
given in Fig. 5c by the iso-spike count curve intercepting the
reference cross).

Together, these results indicate that, although the first determi-
nant of the response reliability is the mean input firing rate, the
structure of ongoing activity enables a more efficient signal transmis-
sion than uncorrelated stimulation. The input firing rate and syn-
chrony levels explain a major part of this increase, but are not
sufficient to reach similar levels of SNR.

Noise resistance
Our simulations allow us to replay precisely each time the same
pattern in the frozen population. In more realistic situations,
however, the frozen units, even if deterministic, could be cor-
rupted by independent noise sources, which could interfere with
signal transmission to the free-running units. To test the noise
resistance of the pattern recall, we generated a set of degraded
patterns from an original spontaneous pattern by randomly jit-
tering each spike by a time drawn from a Gaussian distribution.
The standard deviation of the distribution was varied from 1 to 50
ms. Each resulting pattern was then used to clamp the frozen
units, and we compared the distance [measured as by Victor and
Purpura (1996)] (see also Materials and Methods) between the
spontaneous input and each jittered input against the distance
between their corresponding outputs. We found that the modu-

a b

c

Figure 3. a, Kinetics of the recall index (the normalized cross-correlation between the target activity and the response) as a function of time, before, during, and after the frozen stimulation.
b, Steady-state recall index color coded, as a function of the proportion of excitatory and inhibitory neurons that are frozen. The white dotted line delineates a zone of instability of the network in
which the AI regime is not sustained. c, Raster plot of responses, as in Figure 1b, when recurrent connections between free-running neurons are cut and replaced by independent Poisson spike trains
producing an equivalent mean level of input to the cells.
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lus of the output distance increases linearly with input distance
(Fig. 6a), showing that the response to our stimulation is robust
to noise. The slope of the input– output relationship is 0.57. This
sensitivity to noise well below 1 shows that our stimulation par-
adigm is compatible with a transmission of more “biological”
(i.e., noisy) inputs.

Noise could also be added in the model as external inputs that
will perturb the
recurrent activity of the free-running neurons. To check how
robust is the preference for the ongoing statistics, while the net-
work was asked to replay a particular pattern, all the free cells
received, in addition to the pattern played by the frozen popula-
tion, noisy inputs composed of uncorrelated excitatory and in-
hibitory Poisson spike trains at a certain frequency. This
frequency is expressed relatively to 	thresh, the input rate needed
to reach the threshold in our particular neuron model with
conductance-based synapses, in the absence of recurrent inputs:

	thresh �
gleakVrest

�exc gexcVthresh

. (7)

As can be seen in Figure 6, b and c, the reliability and the recall
index both decrease to a steady-state value when noise is in-
creased. However, the important point is that the relative differ-
ences between stimulation types, observed in the purely
deterministic case (see Fig. 4), are unchanged in the presence of
noise (Fig. 6b). This result cannot be explained by a change in the
firing rates, which remain approximately constant despite the exter-
nal noise applied (Fig. 6c): since this external noise is balanced (ex-
citatory and inhibitory), it has only a small impact on the resulting
firing rates. Figure 6e shows the differences in the SNR according to
the noise levels and for several surrogates. A linear decrease can be
observed, but even for high noise levels (	 up to 3	thresh), the SNR
remains significantly ( p 	 0.001 for LP and GP) higher for the

frozen stimulation with real patterns. These
results confirm the robustness to noise of
the paradigm.

Effect of network parameters
To further test the generality of our obser-
vations, we varied the excitatory synaptic
weights �gexc between 1 and 10 nS and the
inhibitory weights �ginh between 1 and 91
nS, and used three different connection
probabilities 
: 0.5%, 1%, and 2%. Over
all the regions in which the network can
generate an asynchronous irregular re-
gime, the frozen paradigm with 50% fro-
zen neurons produces qualitatively
similar recall performance (Fig. 7a– c) (see
also Vogels and Abbott, 2005). Surpris-
ingly, the recall index is not directly re-
lated to the strength of the synaptic
weights: an increase in synaptic weight
does not necessarily increase the recall in-
dex. Over all conditions of connectivity
and synaptic weights, the recall index in-
creases with both the mean firing rate
(Fig. 7d) and the ISI CV of the correspond-
ing spontaneous activity. The structure of
spontaneous activity, as characterized by
the mean rate and ISI CV values, appears
to be a better predictor of the convergence
performance than is the connectivity

structure of the network. This illustrates that our paradigm
avoids focusing on the nonlinear relationship between the net-
work structure and the way activity is transmitted inside this
network by directly using those activity statistics that are proven
to be sustained by the network. We also examined the level of
reliability obtained with the GP stimulation over the same range
of parameters. Figure 8 shows the normalized difference between
the levels of reliability obtained for the spontaneous and GP stim-
ulations. This difference could reach up to 25%. We did not find
any clear correlation between the amount of synchrony in the
spontaneous activity and this normalized difference (data not
shown).

Frozen paradigm in a chaotic neural field model
Although it generates an irregular activity pattern and exhibits
rapidly diverging responses to small perturbations, the recurrent
model has not been proven mathematically to be chaotic. To have
a better understanding of the effect of stimulation statistics in a
well defined chaotic system, we apply the frozen paradigm to a
neural field model (Sompolinsky et al., 1988) (see Material and
Methods), defined by the following:

dhi

dt
� �hi � �

j
Jij tanh (ghj). (8)

The network is composed of N units, each characterized by its
activity hi. The synaptic weights Jij are drawn from a Gaussian
distribution with mean 0 and variance J 2/N. It has been shown for
large N that when gJ 	 1, the only stable state is the silent state.
When gJ � 1, the network enters a chaotic regime (Sompolinsky
et al., 1988).

Using the same strategy as for the spiking network, we froze
the chaotic system by clamping part of the network to a previ-

a b

c

Figure 4. a, b, Comparison of the reliability (a) and mean firing rate (b) values obtained in response to different stimulation
patterns, for 50% of excitatory and inhibitory frozen neurons. Stimulation patterns are, from left to right: a “real” pattern (Real)
taken from the spontaneous activity, jittered versions of this pattern (5, 15, and 25 ms of jitter; see Materials and Methods), a
Poisson stimulation (SP) reproducing the rate and the synchrony level observed in the real pattern, a Poisson stimulation in which
each neuron has the same mean firing rate as in the spontaneous pattern (LP), and a Poisson stimulation in which all the neurons
have the same firing rate, which is the global mean firing rate of the spontaneous activity (GP). c, Same comparison for the SNR (see
Materials and Methods) across all the surrogates.
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ously recorded trajectory. During this fro-
zen stimulation, we measured the
convergence by the normalized cross-
correlation between the free-running ac-
tivity (values of hi) and the target activity,
equivalent to the previously defined recall
index. As for the spiking network simula-
tions, the cross-correlation (CC) rapidly
increases to a plateau (Fig. 9a), whose
value depends on the proportion of frozen
units and on the network parameter gJ
(Fig. 9b). Full convergence (CC � 0.99)
occurs if the proportion of frozen units is
greater than a threshold value (Fig. 9b,
dotted black line), which increases with gJ.

To test the resistance to noise of this
convergence, we also injected random
noise in addition to the frozen pattern.
The convergence performance decreased
linearly when the amplitude of this noise
increased, the slope depending on the per-
centage of frozen units (see Fig. 9c). The
noise resistance is thus similar to what we
found for the spiking network.

To test the origin of this reliability, we
again used a surrogate stimulation. We
stimulated the subnetwork with random
noise, of mean 0 and standard deviation �
equal to the spontaneous activity standard deviation �SA. The
level of reliability was similar to that obtained with the real pat-
tern. We then varied this standard deviation � relative to �SA (see
Fig. 9d). When � decreased below �SA, the reliability decreased
almost linearly. This confirms that the standard deviation of the
activity is the main factor in explaining the reliability. Interest-
ingly, when we increased � above �SA, the reliability barely in-
creased, whatever the absolute value of �SA. This result holds
when the network parameters g and J and the ratio of frozen units
do not give rise to full convergence (i.e., below the black line in
Fig. 9). For a higher frozen fraction, stimulation with lower stan-
dard deviation can also lead to a saturated full convergence (data
not shown). Thus, over a broad region of the network parameter
space, �SA appears as a reference point in the relationship be-
tween � and the output reliability.

Discussion
In this paper, we analyzed the response of recurrent network
models to a stimulation which mimics episodes of spontaneous
activity. Our main findings are as follows: (1) Stimulating with
spontaneous patterns of activity induces a predictable and noise-
resistant recall of the full ongoing pattern, despite the highly ir-
regular background activity and the context sensitivity of the
network. (2) Despite the fact that the network is deterministic,
the response reliability is modulated by the stimulus type, and
is higher (up to 25%) for the spontaneous stimulation than for
uncorrelated Poisson stimulation. (3) This reliability increase
is mainly explained by the higher synchrony of the input.
However, mimicking the input firing rate and synchrony is not
sufficient to fully reproduce the signal-to-noise ratio obtained with
the spontaneous stimulation.

On the basis of these findings, we make two main experimental
predictions: first, the reliability of the cortical responses should be
modulated by the stimulus statistics in vivo; second, evoked sen-
sory responses with a structure similar to the spontaneous activ-

ity could be the signature of an efficient transmission of
information.

Reliable response/completion despite irregular
background activity
Our model demonstrates the feasibility of a reliable encoding of
stimuli within irregular background activity. Several studies
have shown that a chaotic dynamical system can be reliably
driven by appropriate stimulation, a phenomenon termed
“chaos control” (Garfinkel et al., 1992). Our frozen paradigm
could be seen as a high-dimensional application of “chaos syn-
chronization” (Pecora and Carroll, 1990). While these previous stud-
ies did not explore the effect of the input statistics, we are able to
demonstrate that choosing a driving stimulation that respects the
statistics of spontaneous activity has the advantage of allowing a
prediction of the responses of the free-running neurons. Our
investigation extends these earlier studies by applying these con-
cepts to large-scale neuronal networks. It is important to note
that we do not focus on any global fixed point reached by the
system under the stimulation, but rather on the evoked “suc-
cession of transients,” which are reliable and noise resistant.
This concept has already been the subject of several studies
(Rabinovich et al., 2008), and our results are a possible exam-
ple of this concept in large-scale network models.

The neural field study illustrates the dual role of the stimula-
tion. In this case, it has to be noted that the free subnetwork alone,
without any stimulation, is chaotic (below the white line of Fig.
9b). Nevertheless, the stimulation due to the frozen population
makes a reliable and noise-resistant propagation possible. The
stimulation has two roles. First, it transmits the pattern, and sec-
ond, it changes the context (background activity), so that the
transmission is possible, and resistant to noise. These two com-
plementary roles of the stimulation are due to the nature of re-
current networks, where the stimulation and the background
activity interact with each other.

a b

c

Figure 5. a, b, Mean firing rate (a) and reliability (b), color coded, in response to global Poisson stimulation, for different excitatory and
inhibitory firing rates. c, Reliability versus mean firing rate for different total spike counts. Each “iso-spike count” curve corresponds to the
stimulations of a and b with the same total number of spikes as in the Poisson stimulation, but differently partitioned between excitatory
and inhibitory populations. The black cross indicates the reliability and mean firing rate for the spontaneous pattern.

14602 • J. Neurosci., November 18, 2009 • 29(46):14596 –14606 Marre et al. • Reliable Recall in Recurrent Networks



Origin and stimulus dependence of the reliability
Our reliability study uncovers two findings. First, even if the net-
work model used in this study is entirely deterministic, we ob-
served a large trial to trial variability in response to the repetitions
of the same stimulus. All the observed variability must originate
in the surrounding network activity. As a consequence, experi-
mentally, a large part of the trial to trial variability may come
from the context sensitivity of a cortical network, and could thus
be predicted by the preceding ongoing activity. This is in line with

previous experimental reports where the preceding ongoing ac-
tivity was a major source of variability (Arieli et al., 1996; Azouz
and Gray, 1999; Deweese and Zador, 2004).

Second, our study also demonstrates that the response reli-
ability can be modulated by the stimulus statistics in a nontrivial
manner. Although the first determinant of the reliability level
is the mean firing of the input, the higher-order structure of
the stimulation has also a non-negligible effect (up to 25%),
and this over the whole range of model parameters explored.

a b

d e

c

Figure 6. Noise resistance of the paradigm. a, The coordinates of each point are the Victor–Purpura (VP) distance �x � �(x)�VP between an input pattern x and the jittered version of it �(x)
(horizontal axis), and the VP distance between the corresponding output patterns (vertical axis). b, c, Evolution of the reliability (b) and the firing rate (c) in the free-running neurons for several level
of external noise (relatively to 	thresh). Errors bars are obtained on 10 run per surrogate. d, e, Linear decrease of the reproducibility for one particular pattern (d), and difference between the SNRs
obtained with a real pattern and those obtained for surrogates (e), as a function of the external noise.

a b c

d e

Figure 7. a– c, Recall index for 50% of neurons frozen as a function of the excitatory and inhibitory synaptic weights, and for different connection probabilities 
: 0.5% (a), 1% (b), and 2% (c).
The dark blue zones indicates regions in which the network either cannot sustain spontaneous activity or enters a synchronous regular state. d, e, Recall index values obtained in a– c plotted against
the mean firing rate (d) and ISI CV (e) of the spontaneous activity of the same network.
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Previous theoretical results could be reinterpreted in light of
this result. Vogels et al. (2005) noted that their modified net-
work, which enhanced firing rate but not synfire chain propa-
gation, occasionally transmitted “ghost signals.” We interpret this
reminiscence of the reliably evoked activity in spontaneous dynam-
ics as another example of a network model that better transmits
signals whose statistics match those of the spontaneous activity.

Beyond rate and synchrony
Our surrogate stimulation mimicking both the level of input
firing rate and synchrony reached the same output reliability
as the spontaneous stimulation. Nevertheless, since the output

firing rate is lower, the resulting SNR is still lower than for the
spontaneous stimulation. Previous studies have focused on
the impact of rate (Vogels and Abbott, 2005) and synchrony
(Mehring et al., 2003; Kumar et al., 2008) on the propagation
of activity in recurrent networks. Our study showed that
these two factors, though important, are not entirely sufficient
to explain the SNR of the response to the spontaneous stimu-
lation. Further studies will aim at identifying additional con-
tributions to this SNR modulation. Among others, using a
stimulation with heterogeneous firing rates could be one of
these factors (see the difference between local and global
Poisson stimulation).

a b c

Figure 8. Normalized difference between the reliability obtained with global Poisson stimulation and that obtained with a real pattern, as a function of the synaptic weights, for different
connectivities, 
.

a b

dc

Figure 9. a, Kinetics of the normalized cross-correlation between the target activity and the response of neural fields as a function of time, before, during, and after the frozen
stimulation, for three different ratios of frozen neural fields. In this example, gJ � 2.1. b, Steady-state values of the cross-correlation between target and free-running activities
measured as a function of the ratio of frozen neural fields (vertical axis) and the network parameter gJ (horizontal axis). The black dotted line is the full convergence limit (CC � 0.99)
and the white dotted line the limit under which the free subnetwork, without any stimulation, is still chaotic. c, Normalized cross-correlation for several percentages of frozen units and
for several amounts of noise added (in percentage of �SA) to an ongoing pattern. d, Normalized cross-correlation when a surrogate Gaussian noise with a standard deviation expressed
in percentage of �SA is used as a stimulation instead of a real pattern. In both cases, the network parameter was gJ � 2.1.
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Relation to experimental data
In light of our results, we can propose an explanation for the
discrepancy mentioned in the Introduction between the reli-
able spiking activity observed in vitro (Mainen and Sejnowski,
1995) and the variability often observed in vivo. Our study
indeed predicts that the reliability should be modulated by the
stimulus statistics, and this has been observed experimentally:
intracellular studies demonstrate that the reliability of sub-
threshold activity is increased during natural scene viewing
(Baudot et al., 2004; Frégnac et al., 2005) or when the stimulus
evokes strong shunting inhibition (Monier et al., 2008).

Some reports point out that the reliability of responses could
depend on the interaction between internally generated and
sensory-evoked activities (see above). In particular, the precision
of the spiking responses may depend on the global reverberation
rhythm generated by the recurrent network connectivity, which
could preserve or destroy the sensory information, depending on
the relative phase and the amplitude of the fast oscillations (for
review, see Tiesinga et al., 2008). We propose to extend this pre-
diction for nonoscillatory, irregular stimuli and background ac-
tivity. Reliability should be increased when a cooperative mode
(Heidmann et al., 1984) between the structure of the input and
the recurrent connectivity of the network is uncovered. The fro-
zen stimulation might be an example of such a mode.

If our stimulation, mimicking the spontaneous statistics, is
indeed relevant in an experimental context, a similarity between
the structure of spontaneous and evoked activities should be ob-
served, and would correspond to an increased reliability of cor-
tical responses. Similar levels of activity during spontaneous and
sensory evoked regimes have been reported in primary auditory
cortex, area A1 (deCharms and Merzenich, 1996), but the rela-
tionship between the structures of spontaneous and sensory-
evoked activities is still a matter of debate in primary sensory
areas. In the visual cortex, voltage-sensitive dye imaging in the
anesthetized cat has shown similar cortical activity maps for
spontaneous and grating-evoked responses (Tsodyks et al., 1999;
Kenet et al., 2003). Additionally, in awake ferrets, multiunit re-
cordings have shown that the temporal correlations of the activity
remain unchanged when switching from ongoing activity to nat-
ural stimulation (Fiser et al., 2004). Finally, Han et al. (2008) have
shown that a repeated stimulation modifies the structure of the
spontaneous activity over several minutes, such this latter be-
comes more similar to the previously imposed evoked activity. In
A1, it seems that the sets of responses to different types of stimuli
are all included in the phase space delimited by the spontaneous
activity (Luczak et al., 2009). It would be interesting to compare
the reliability of these responses to other types of stimuli. Our
results make us hypothesize that the reliability will be higher
when the spontaneous and evoked activities are similar.

Conclusion
We have shown that, even in a deterministic network, the reli-
ability of the responses can be modulated by the type of stimuli.
As a consequence, to a given recurrent network would corre-
spond a set of stimuli which are more efficiently transmitted than
others. According to our results, the spontaneous activity could
be a reference point in this set. This supports the hypothesis that
similarity between evoked and spontaneous activities is the sig-
nature of an efficient mode of transmission across recurrent
networks. However, further research will need to delimit this
set by searching for other types of stimuli that are as efficiently
transmitted.

Having stated that a match between spontaneous activity and
input statistics evokes a better recall, we can hypothesize that the
connectivity could have been shaped by a learning process so that
the spontaneous activity matches the natural input statistics. In
the case of a Boltzmann machine with binary neurons, where the
inputs are also transmitted by “freezing” some neurons, the
learning of the input statistics does induce such a match (Ackley
et al., 1985). However, an equivalent learning process for a net-
work of integrate and fire neurons is currently unknown. Never-
theless, the connectivity in our network model can be viewed as
the result of an unseen learning process, where the network has
learned to transmit more efficiently a particular set of inputs. We
can hypothesize that at least part of these inputs are replayed by
spontaneous activity. Experimentally, a possible consequence
could be that the spontaneous ongoing activity replays the
learned “neuronal songs” (Han et al., 2008). A complete imple-
mentation of this hypothesis would require a better knowledge of
unsupervised plasticity mechanisms during the learning phase.
According to our interpretation, the cortical network would effi-
ciently transmit learned, i.e., predicted, patterns, without depart-
ing from ongoing activity. This would allow a robust mapping for
some features selected by the spontaneous activity.

A more speculative extrapolation is to view the spontaneous
activity as what the cortical network “expects” to transmit effi-
ciently. The dynamic changes in the temporal structure of the
spontaneous activity could be interpreted as transient switches
between different sets of “expectations” or hypotheses made on
the basis of the continuously updated incoming sensory flow.
More extensive experimental research on the conditions under
which ongoing activity in recurrent networks recapitulates frag-
ments of previously learned memories (or “songs”) (Louie and
Wilson, 2001; Ikegaya et al., 2004) (but see Mokeichev et al.,
2007) is needed to consolidate this view.
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9 Discussion

9.1 A general paradigm

Generalization of the Frozen Paradigm Theoretically, the Frozen Paradigm is fairly gen-
eral, and can be applied to many kinds of neural network model. Neuron models and connec-
tivity can be changed in order to explore the performance of the recall according to several
connectivity schemes. Apart from the neural field model, we have tested it on a collection of
recurrent spiking network models taken from the literature. In a recurrent network similar to
that of Vogels and Abbott (2005), when the synaptic weights are not constant but distributed
according to a normal distribution, convergence is the same. Since this gave similar results
to the spiking network described earlier, it shows that heterogeneous synaptic weights and
delays do not hamper the convergence process. This is a crucial point, because heterogeneous
networks are important in avoiding artificial synchronies.

The network described in Brunel (2000) is composed of spiking current based integrate-and-
fire neurons, with a connectivity ratio of about 10%, and stochastic noise injected to sustain
the ongoing activity. The Frozen Paradigm was applied to this model (data not shown) and
results in a completion index reaching 0.1, a weak value but significantly above the baseline.
The decrease of the performance compared to the Vogels and Abbott case should be attributed
to the high level of stochastic noise injected, a non deterministic component which constitutes
an obvious cause for this lower convergence: opposite to the irregular activity produced by
the recurrent network, the stochastic noise injected in the model of Brunel (2000) cannot be
modulated by any stimulation. Another point which could largely affect the convergence in
our frozen stimulation is the addition of “dynamical components” in the model which could, at
best, delay the fast convergence. We tested our paradigm on a recurrent model of current based
integrate-and-fire neurons including so-called dynamical synapses (Tsodyks et al., 2000) with
standard parameters for adaptation and depression. Observing the evolution of the completion
index in Figure 15, it appears that the level of convergence is low, but the kinetics is as fast as
before. Denser networks than the one considered in the article (connectivity ε = 2%), but with
dynamical synapses can lead to an effective connectivity rather low, and the Frozen Paradigm
seems to be still valid.

The “inhibitory gate” Note that to keep the number of parameters as low as possible, the
networks used in the previous article for the Frozen Paradigm are completely homogeneous.
Results show that in such balanced networks, where inhibition is very strong to counter bal-
ance the excitatory inputs, clamping the inhibitory neurons is the key factor influencing the
quality of the recall. But inhomogeneities could also affect it. If we consider for example
the thalamo-cortical system as a single network, cortical neurons are much more numerous
than thalamical ones (' 50 fold more). Nevertheless, the thalamical neurons have much more
projections onto the cortex, with stronger synapses. A scenario in which the thalamus is the
clamped sub-population driving the rest of the cortex should be considered. External inputs
from the retina to the LGN are known to be strong and could efficiently drive the thalamic
neurons, making them almost-clamped and insensitive to the cortical feedback. This feed-
back, indeed, is mainly inhibitory and also is known to enhance the precision of the LGN
responses, from a trial-to-trial basis (Andolina et al., 2007). Hence the ensemble formed by
the thalamus and the layer 4 of cortex, including the feedforwad inhibitory activation of small
inteneurons (the so-called “inhibitory gate” described by Bear, Dudek and Friedlander) could



9.1 - A general paradigm 77

500 1000 1500 2000 2500
Time (ms)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

C
ro

ss
 C

o
rr

e
la

ti
o
n

25%
50%
75%

Figure 15: a) Time course of the normalized cross correlation between the target and the
induced activity for different ratios of frozen neurons, but for a different network model
(Tsodyks et al., 2000).

act as a frozen layer, reformatting the drive to cortex and inducing particular trajectories and
global recall in the attractor of the ongoing activity of the reamining free cortical units (mostly
outside layer 4) (see Figure 16).

Preliminary simulations have also shown that the frozen stimulation would also make net-
works with more local (Gaussian) connectivity converge, like those that will be studied in
further Part III. Since it has been already reported by El Boustani and Destexhe (2009b) that
changing the locality of the connections in a sparsely connected recurrent network does not
change the macroscopic behaviour of the network, we can hypothesize that similar effects will
be produced by the frozen stimulation. Nevertheless, a clear understanding of the dynamical
states is a first step to better quantify the convergence in such networks. This will be the
subject of the next Part.

Dependence of the convergence on the mean firing rate Our study shows that the number
of spikes in the stimulation is a major factor in efficiently driving the free sub-network. The
study on parameter dependency demonstrates how the mean firing rate and the recall perfor-
mance are linked together. However, above 20 Hz, the recall performance seems to reach a
plateau and is no longer sensitive to the firing rate. From our results, we can hypothesize
that for any neural network there is a spontaneous firing rate which corresponds to a compro-
mise between the “metabolic” cost of spiking and the transmission performance: if the firing
rate is too low, the patterns of the ongoing activity, despite their optimality, will be poorly
transmitted. The mean firing rate of the irregular activity measured in vivo may illustrate this
compromise. In particular, the increase of firing rate when switching from sleep to the awake
state observed in several cortical areas (see for example Steriade et al. (2001)) may correspond
to a need to increase the transmission performance in the awake state.

Chaos control Theoretically, our paradigm is not limited to neural systems. Any dynamical
system with several variables could be the subject of such a partial constraint, with the aim of
propagate a stored pattern to the rest of the network. The first method that attempted to control
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Figure 16: Schematic drawing of the Frozen Paradigm, applied to recurrent network thalamus
& cortex. The ensemble formed by the thalamus and the layer 4 of cortex, including the
feedforwad inhibitory activation of small inteneurons could act as a frozen layer, constraining
the dynamical regime outside layer 4.

a chaotic system was termed the “chaos control” method. The idea was to benefit from the
perturbation sensitivity of the chaotic system: a series of small perturbations is designed to
drive the system into a determined orbit. This orbit becomes stable under these stimulations.
However, this method is designed to drive the system in a very low dimensional attractor.
A strategy more similar to ours has been partially used in Pecora and Carroll (1990). In this
seminal paper, the authors proposed a method of controlling a chaotic system, and applied it to
simple examples. For any dynamical system composed of N variables Xi, they chose a subset
of variables and imposed random noise on them, while leaving the rest of the system freely
running. Then, they measured whether this stimulation induces a convergence to the same
trajectory at each trial. They applied their method to the Lorentz attractor and showed that
imposing a random stimulation on the x variable is sufficient to control the y and z variables,
since the different trials converge to the same trajectory. Their analytical study links this
convergence to the negativity of the Lyapunov exponent of the sub-system.

Both the differences and the common points with our frozen paradigm appear clearly. On
the one hand, both methods drive a system by freezing a subpart of it, and compute the reli-
ability of the convergence in the same way. On the other hand, the frozen paradigm method
also constrains the stimulation to belong to the attractor originally defining the dynamical
system. This constraint allows to predict towards which trajectory the response should con-
verge, even for complex systems with many dimensions, for which an analytical prediction
would be impossible (see the work of Teramae and Fukai (2008)). Furthermore, we applied
our paradigm to models having attractors of large dimensions, while the chaos control ex-
amples were restricted to low dimensional attractors, and the neural field study shows that
our paradigm allows a quasi-convergence even in regions where the Lyapunov exponents stay
positive. The model consists of N local “neural fields” defined by their activities hi and with
dynamics governed by equation:

dhi

dt
=−hi +

N

∑
j=1

Ji jtan(gh j) (6)
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where the synaptic weights Ji j are randomly taken from a gaussian distribution N(0, J2

N ). As
explained in the article, for N→ ∞, if gJ < 1, the network activity decays to 0, and if gJ > 1,
the system is in a chaotic regime (Sompolinsky et al., 1988).

The free subnetwork alone has N0 = (1− r)N units, where r is the ratio of frozen neural-field
neurons. The variance of the synaptic weights is the free subnetwork is:

var(Ji j) =
J2

N
=

(
√

1− rJ)2

N0
(7)

The free subnetwork can thus be related to a neural field network of parameters g0 = g and
J0 =

√
1− rJ. It is chaotic when g0J0 > 1, i.e. when:

g
√

1− rJ > 1 (8)

r < 1− 1
(gJ)2 (9)

The equation of the limit of the chaotic zone (white dashed line) in Figure 9b of the article is
thus:

rlim = 1− 1
(gJ)2 (10)

This result shows that despite the chaotic nature of the free subnetwork itself, the drive can
still be achieved. It has also been shown recently (Rajan et al., 2010) that external inputs can
suppress the chaotic nature of the ongoing activity in a network, bringing the system to a well
defined state which could be linked to the convergence we are observing.

9.2 On the role of the recurrent connections

Role of the recurrent connections The recurrent connections are an important part of the
network dynamics, and their functional role in the coding strategy used by the brain is still
unclear. Shadlen and Newsome (1998) proposed that recurrent connections provide an input
which maintains the network activity in a delimited range. To demonstrate this, they mod-
elled the input coming from recurrent connections with a Poisson input, and searched for the
necessary conditions for the neuron to produce a graded output. It appears that balancing
excitation with inhibition is required for this purpose, and this generates as a consequence
an irregular spiking output. From this study they deduced that the mean firing rate, averaged
over hundreds of neurons, is the only measure which carries information, and does not require
precise spike patterns. This implies that the computations carried out by cortical areas can
only result from the convergence of feed-forward projections from one area to another in a
rate based coding scheme. However, their reasoning is entirely based on the assumption that
the irregular activity generated by intra-cortical connections can be modelled by a random
walk. Since we know that the neuronal integration of a highly fluctuating current is reliable
(Mainen and Sejnowski, 1995), this irregular background can be much more structured than
expected and replicated from trial-to-trial even in a sensory drive condition. If the random
walk can indeed by a good model for the irregularity of the sub-threshold activity, it is not
appropriate to reproduce the trial-to-trial reliability that we have observed in our experimental
results. It is also not the only way of generating an irregular activity, since van Vreeswijk and
Sompolinsky (1996) have proven that even a deterministic model can generate this irregular
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activity. Furthermore, the stochasticity assumption of Shadlen and Newsome is equivalent
to assume that there is no cooperation between the input and the recurrent connections. Our
model proves the opposite, while still being stable and having irregular activity.

Computational paradigm In his seminal study, Hopfield (1982) proposed a model where
a network performs a completion of a pattern imposed on a sub population of units. In this
case, the model is a purely recurrent network, fully connected, and the connectivity determines
which patterns the network is able to complete. The philosophy of our paradigm is quite simi-
lar: the recurrent connections select which patterns will be efficiently transmitted. But we also
apply our paradigm to more complex (and more realistic) models than the spin glass model
of Hopfield. Furthermore, the Hopfield network, in its original implementation, only stores
purely spatial patterns. In comparison, our paradigm can deal with spatio-temporal patterns.
Brody and Hopfield (2003) have extended the Hopfield network to encode the stimulus in-
formation into spatio-temporal patterns. The principle of their model is that the stimulus is
encoded by the latency of the spikes relative to an oscillation which is common to all the neu-
rons. This oscillation constitutes a reference frame for the temporal aspect of the patterns, and
is also present in the sub-threshold fluctuations of the activity, even in the spontaneous regime.
Their work thus presents many points in common with our paradigm, the main difference be-
ing that the reference frame of the oscillatory drive is replaced in our case by the irregular
activity sustained by the network. In view of the numerous experimental results showing the
irregularity of the cortical activity, we hypothesize that our paradigm is better adapted to un-
derstand cortical processing, whereas, as Brody and Hopfield themselves remark, their model
presents many similarities with the sensory processing performed in olfactory and hippocam-
pal systems. These differences illustrate how strongly the spontaneous activity can impact on
the way information is processed by recurrent networks.

The role played by the recurrent connections in our paradigm is thus close to the idea of
Hopfield and the memory paradigm of Ackley et al. (1985): in his case, they participate in
selecting some patterns that are better completed and transmitted than others. In the original
Hopfield implementation, this was an all-or-none effect: either a pattern is stored, and will be
efficiently completed, or it will be brought back to the pattern which includes it in its attraction
basin. In our case, the efficiency of transmission decreases continuously when the stimulation
pattern deviates from the spontaneous statistics. We can thus see our paradigm as a statistical
and temporal version of the same idea: it better transmits the stimulus which is close to the
statistics of the spontaneous activity. We can define an “optimal stimulus ensemble” (Machens
et al., 2005) as the statistical set of stimuli which are efficiently transmitted by the network.
The relationship between the recurrent connectivity and this ensemble is not trivial, but our
work shows the identification of this ensemble with the spontaneous activity statistics.

What kind of computations can such a recurrent network model perform? Inspired by Hopfield
networks and the Boltzmann machine (see Part IV), we propose that such a network is best
suited to map a specific probabilistic input-output relationship between the frozen neurons
and the free neurons. To detail this relation, we define the vector ~u describing the possible
spiking activities of the frozen neurons (~u is thus a vector of the spatio-temporal activity),
and ~v the vector describing the activity of the free neurons. Any probabilistic input-output
relationship can be defined by a conditional distribution P(~v|~u). Our proposition is that the
recurrent network model is best suited to map the relation Ps(~v|~u), defined by

Ps(~v|~u) =
Ps(~v,~u)
Ps(~u)

(11)
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where Ps(~v,~u) is the distribution of the spontaneous activity over the whole network, and Ps(~u)
is the distribution of the spontaneous activity over the frozen neurons. This latter is the opti-
mal stimulus ensemble that we defined above. The recurrent network is best adapted to this
probabilistic relation since the reliability of the response is maximal when the input respects
the spontaneous activity statistics. More formally, we can say that, with the constraints of
keeping the mean firing rate equal to the mean spontaneous activity, this conditional distribu-
tion Ps(~v,~u) is probably the one with the lowest conditional entropy. This means that it gives
the most reliable relation between ~u and~v. This is reminiscent of the theoretical foundations
of the Boltzman machine, and many other representational models. The difference is that the
Boltzmann machine aims at finding the stochastic binary recurrent network that best maps
a given probabilistic input-output relationship. It learns the statistics of an input ensemble.
Here, we start from a given recurrent network, and we try to find the input-output relation-
ship that is best mapped by this network. Both approaches converge to the conclusion that
the chosen input-output relation is found in the spontaneous activity statistics. As mentioned
before, the symmetry of these approaches makes us consider the recurrent network model as
the product of an unknown learning process of Ps(~v|~u).
Following this idea of an associative memory, presentation of the subpart ~u, played only
through the clamped neurons, can trigger the activation of a more complex pattern~v. In theory,
the dimensions of~v can be much higher than those of ~u, if the network is built appropriately,
with some heterogeneities. Therefore the network could be used for information compression:
suppose you have data that you can convert into temporal streams of information, for example
by temporal latencies within the spike trains. By inverting the problem and clamping the free
neurons, one could generate a key~v, signature of the data. With some learning rules, like those
that will be explained later (see Part IV), one could also try to shape the network connectivity
in order to better store the pattern in its dynamics, since it has been shown to be feasible to
embed synfire chains in asynchronous irregular regimes (Kumar et al., 2008a). This key~v can
then be used to replay the data, and the dimensionality reduction between ~u and ~v would be
the compression factor. The missing part of these numerical simulations is about the capacity
of such a system. Since the recall is not perfect, what are the key parameters constraining the
size of the attraction basins for each pattern? Further studies need to be carried out to answer
this question, in order to have a tractable and working system.

A learned match between evoked and ongoing activity The model we used is a generic
one, and cannot be considered as a realistic model of V1. More realistic models will be
explored in the following Part, mainly in the interest of understanding their dynamics. Never-
theless, the concept of the Frozen Paradigm leads to interesting experimental predictions. The
Frozen Paradigm implies that the statistics of the spontaneous activity are efficient stimuli for
driving the network and enhancing information transmission for a constant energy level in the
stimulation. This should be linked with the experimental results shown previously in V1 neu-
rons (see Figure 14). Neuronal responses in response to natural images, are more sparse and
time locked than those in response to surrogate inputs, such as drifting gratings. Therefore the
natural stimuli seem to correspond to an efficient stimulation, in the sense that they are able
to evoke reproducible and irregular responses despite the low mean firing rate. One can hypo-
thetize that the particular statistics of the visual world have been learned by the visual cortex
during epigenesis (Spinelli and Jensen, 1979, Sur et al., 1999, Frégnac, 1999, Wörgötter et al.,
1998, Kenet et al., 2003, Tsodyks et al., 1999) and that this learning has established a match
between ongoing activity and external inputs. In the absence of any inputs, the system wan-
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ders on the attractor of the ongoing activity, and therefore replay part of statistics it has been
trained to. The whole conceptual picture then becomes that the cortical network learns statis-
tics to which it can then respond in a reproducible manner, and the consequence would be that
these responses are then replayed during spontaneous activity. This argument is favoured by
the previous result based on the analysis of the power spectrum density of cortical neurons in
vivo. The fact that the scaling exponents are very similar during spontaneous activity and nat-
ural scene stimulation indicates that both conditions trigger a similar amount of correlations
within the network.

With the Frozen Paradigm, we implicitly make the hypothesis that the patterns played spon-
taneously by the network can be seen as the result of an unknown learning process: we do
not control it, but a random network has a particular connectivity matrix, constraining the
attractor of its ongoing activity, and defining a subspace of all possible dynamics. A good
way to test it would be to design two random networks with slightly different structures, in
order to have distinct dynamics, and to use the activity generated by the first one to drive the
other. One should expect a better reliability if self-generated statistics are used, compared to
the case where the activity generated by the other network is used.

If we now come back to the results observed by Fiser et al. (2004) (see Figure 12), we can
reinterpret it under the light of this match with ongoing activity. Our theoretical work provides
a reason why the activity structure does not change too much when imposing complex sensory
inputs (natural images). According to our interpretation, the absence of changes would not
mean that the sensory input does not drive the cortical activity. Rather, it shows that this drive
is achieved without altering the global structure of the cortical activity. Taken together, these
results show that our hypothesis is compatible with recent work that studies the properties of
the spontaneous activity in the visual cortex. The issue thus remains to be examined more
carefully in experimental studies.

Link with macroscopic fMRI observations Despite the success of our approach in ac-
counting for the replay of particular statistics, the kind of networks we are using is more
adapted to the scale of only one cortical area. At this level, a first order prediction of our
model is that the change of mean activity should be minimal for certain types of stimuli, for
which the information would be efficiently transmitted. For more macroscopic structures,
functional Magnetic Resonance Imaging (fMRI) recordings offer a clean and nice view, at the
population level, of this ongoing activity and of the fluctuations in this resting state ( see Fox
and Raichle (2007) for a review). Some fMRI studies have shown the absence of differential
responses of primary visual areas to visual stimulation (Murray et al., 2002) interpret this ab-
sence of response as the result of a suppressive feedback, but the Frozen Paradigm hypothesis
suggests that this absence of responses could just be due to the fact that these signals match the
input statistics learned by the V1 network. When stimulating the area with patterns sharing
statistical similarities with the ongoing activity, the response of the network is only slightly
affected and this is hard to observe from an activity point of view. Most of the responses de-
scribed in both fMRI and electro-encephalography signals correspond to transient responses
to static stimuli. These transient variations have often been reported as corresponding to “un-
expected” signals, with examples such as the mismatch negativity in MEEG. fMRI signals
have also been interpreted as expectations about the environment (Pouget et al., 2003, Fox
and Raichle, 2007). The fMRI response often decreases with the number of successive repe-
titions. It is often assumed that this decrease of activity corresponds to an adaptation effect at
the neuronal level. Our theoretical results may be the future basis for an alternative interpreta-
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tion, which would need further work, but can be tested. The network models we have used are
“fixed”: they do not have any capacity of adaptation or learning. But if we hypothesize now
that for models incorporating adaptation, our paradigm still works, we can then picture that
the “optimal stimulus ensemble” defined above will be dynamically changed with adaptation.
It means that this kind of network will progressively learn the repeated test input statistics
during successive trials. Consequently, the network response signalling deviation from the
initial ongoing statistics will progressively disappear by plasticity (see Part IV). Ultimately,
when this inclusion will be achieved, there will not be any more macroscopic responses to
this stimulation. We will address this question of learning and adaptation in Part IV of this
manuscript.
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10 Introduction

10.1 Toward more realistic networks

In the case of the Frozen Paradigm, we showed that the statistics of the spontaneous activity
(and therefore its correlations) have a particular role when spontaneous patterns were used
as external inputs. Comparison with surrogates patterns, reproducing first- and second-order
statistics of the ongoing activity (Synchronous Poisson) produced a lower signal to noise ratio
(SNR). This result implies that the higher-order correlations of the ongoing activity should
recruit more non-linear interactions and may help the system to enhance its reliability. We
also showed that these correlations, present in the ongoing activity, were similar to those
evoked in vivo and in V1 neurons when the system was stimulated with complex stimuli, such
as natural images. To be in line with the literature on balanced random networks, the Frozen
Paradigm was implemented in a network as generic and as homogeneous as possible, with
well known dynamics. Parameters were well controlled and studied, to centre the attention on
information transmission and the design of the paradigm.

A natural step would be to extend this to topographical and other more realistic networks.
This would allow the study of how the convergence of the recall depends on the detailed
topology (defined here in terms of probability of connections), and how the frozen activity
spreads into the rest of the network. Even if homogeneous and random balanced networks are
interesting because they capture properties of the neuronal dynamics, they lack more realistic
characteristics that can be found in vivo. Considering generic and simple wiring schemes
can lead to analytical frameworks where key coding properties such as correlations can be
described and predicted. This is for example the work of Kriener et al. (2009), analysing the
distribution of pairwise cross-correlations in several random networks in the Asynchronous
Irregular regime. As we saw in Part I, correlations are crucial because they are thought to
be a major element in neuronal interactions and the basis of the temporal code. Therefore an
important step, before extending the Frozen Paradigm to more biologically realistic networks,
is to perform a clear and exhaustive study of topographical networks, and especially on how
correlations organize in those networks. As already noted in Part I, the balanced random
network is one of the simplest kinds of network able to generate an irregular activity. But
cortical organization seems to be more organized, and anatomical data do not suggest that
the connectivity is random. Without knowing if this connectivity is the result of a learning
process or hard-wired, we can simply observe that, for example, in V1 neurons are connected
in a patchy manner, according to the underlying orientation maps (see Figure 17). The exact
structure of the canonical microcircuits within layers can be assessed by dual recordings in
vitro (Binzegger et al., 2004, Thomson and Bannister, 2003), but such complex organizations,
where connections are made not only as a function of distance, but also as a function of other
features (preferred orientation, direction selectivity, ...) introduce more complex correlation
patterns, and it is important to know what are the relevant quantities that may control such
correlation levels.

10.2 A link with macroscopic measures

The aim of this Part is therefore to provide networks and simulations that will give a better in-
sight about correlations in structured neuronal networks of spiking neurons. To target generic
results, the key point is to keep the network as simple as possible, and to try to dissect its re-
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Figure 17: Taken from Stettler et al. (2002). Patchy lateral connectivity in macaque primary
visual cortex: axons from an injection labelling 320 cells in the superficial layers of V1 are
super-imposed upon the optical imaging orientation map for that portion of cortex. The white
ring is 1 mm in diameter. While the axons proximal to the injection site display little orien-
tation specificity, patches that form ' 500 µm from the injection are targeted to orientation
domains of similar preference to their cell bodies.

sponse without exploring the huge parameter space of all the parameters. Understanding the
dynamics of such networks is important while recording techniques are nowadays able to give
a glimpse of the macroscopic activity of a large cortical surface. For example voltage sensitive
dye imaging (VSD) now allows recording of surfaces up to several square millimetres, and on
that scale, the approximation of the balanced random network without any propagation delay
cannot stand any more. Even if this approximation can be considered as valid in a small vol-
ume, understanding large scale phenomena such as synchronization within areas, or travelling
waves (Han et al., 2008, Contreras, 2007, Mohajerani et al., 2010), is an important step. So if
one wants to be able to know what are the relevant parameters influencing the dynamical states
of topographical networks, one need to simulate them: simulations are important in order to
be able to build a topographical description, with rate-based units, or neural fields, of large
cortical networks. Since theoretical studies on balanced random network can accurately de-
scribe the dynamics without topology, with a master equation formalism (Brunel and Hakim,
1999, El Boustani et al., 2009), the next step is to have equations and predictions that can be
matched to simulations with a structured connectivity, and according to some inhomogeneity
in the coupling scheme (Jradeh, 2010). This work is also done with continuous neural field
units (Wilson and Cowan, 1972, Amari, 1977, Bressloff, 2002). An encouraging step in the
direction of a topographical description with a master equation formalism, without struggling
with the number of parameters, is the demonstration by El Boustani et al. (2009), that some
invariant in the connectivity may be relevant to accurately describe the dynamics: for balanced
random networks with integrate-and-fire neurons and current based synapses, the number of
incoming synapses per neuron Nin is the only quantity of the connectivity relevant for describ-
ing the stationary state of the system, up to its second order statistics (averaged firing rate
and variance). Building a topographically organized network with a Gaussian probability of
connection (see following article for more details) does not alter these estimates, as long as
Nin is kept constant. Motivation of this Part is then to study the existence of such invariants,
with a particular attention on the cross-correlations profile within the network. This is a im-
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portant step for the understanding of the parameters driving the dynamical regimes observed
with these particular layered networks and for establishing a link, through mean-fields mod-
els, with macroscopic measures now recorded in vivo (VSD, local fields potentials (LFP)).
Since one cannot exclude that the mean-field assumptions themselves cancel the sensitivity
of the model to microscopic irregularities, invariants help to fill the gap between micro and
macroscopic models.

The other interesting question, already raised in the previous Part, with the Frozen Paradigm
and the debate about the similarities between ongoing and evoked activities, is how the cor-
relation structure is affected by the presentation of a stimulus. In recent experimental data,
such as spike-triggered LFP data (Nauhaus et al., 2009), one can see how changing the input
(increasing the contrast) can change the profile of the spatio-temporal correlations in V1. The
more the network is stimulated, the more the spatial spread of the correlations is reduced.
Inhibition is more active and tends to decorrelate the cells over large distances. This results
was already observed in the PLoS article presented in the previous Part (see Figure 3, panel
E).

11 Macroscopic invariants in topological networks

In the following article, we studied the spatial profile of pairwise cross-correlation coefficients
in topographically organized networks of integrate and fire neurons, connected according to
Gaussian profiles and including linear propagation delays with a finite velocity. The main
regime observed was the Synchronous Regular regime, displaying oscillations and waves of
activity close to those reported in voltage sensitive dyes imaging studies. I design the network
and the experiment in collaboration with one of my colleague, Sami El Boustani, and we both
worked equally on the project.

11.1 Main results
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1 Introduction

Spatio-temporal correlations are a key signature of the cortical population spiking dis-

charge, measured in the recurrent spontaneous ongoing activity or from sensory-driven

activity. Correlations have been classically considered as a crucial component of the

neuronal assembly code (Singer and Gray, 1995; Nirenberg and Latham, 2003) also

linked to behavior (Zohary et al, 1994). Today, a more precise insight about their

spatiotemporal structure, and the supra- and/or sub-threshold level, is given by anal-

ysis techniques using intracellular recordings and modeling (Destexhe and Paré, 1999;

El Boustani et al, 2009), multi electrode arrays (Smith and Kohn, 2008) or 2-photon

imaging (Göbel et al, 2007; Greenberg et al, 2008). Understanding how these correla-

tions emerge in recurrent neuronal networks and how their structure could be related

to some generic network properties can help assessing their functional role and their

relation or independence with the local built-in microscopic anatomical connectivity.

One important issue about neuronal correlations lies also in the way they are mod-

ulated by external stimulation. It is indeed well known that neuronal pairwise cor-

relations can be affected by the presentation of a stimulus (Kohn and Smith, 2005;

Nauhaus et al, 2009; Smith and Kohn, 2008; Mitchell et al, 2009), but the way they

can change as a function of the stimulus statistics is poorly understood. Identifying the

generic properties of the input that can influence the pairwise cross-correlation pro-

file within sensory areas could provide an estimation of the sensory input properties

knowing some experimental functional measurements.

In the superficial layers of the primary visual cortex, correlations are clustered as a

function of the underlying orientation maps constraining the correlated inputs that are

more frequently seen by a particular neuron (Berger et al, 2007; Nauhaus et al, 2009),

but they can also span a large cortical surface (Smith and Kohn, 2008; Schwarz and

Bolz, 1991), decaying with distance. In this context, the distance-dependent profile

of the pairwise cross-correlations could be used to gain some knowledge about the

underlying hard-wired connectivity.

The balanced random network (van Vreeswijk and Sompolinsky, 1996, 1998; Brunel,

2000; Vogels and Abbott, 2005; Kumar et al, 2008; El Boustani and Destexhe, 2009;

Amit and Brunel, 1997; Renart et al, 2010) is a common and convenient framework to

study the dynamic of large-scale populations of sparsely-connected integrate-and-fire

neurons, and to reproduce the so-called slow Synchronous Irregular (SI) states observed

in vivo (Brunel, 2000). In such regimes, neurons are firing in an irregular manner,

behaving almost like Poisson processes, and the average pairwise cross-correlations

value is modulated by the internal balance or the external input. This regime is also

well suited to produce slow oscillations comparable with observed oscillations in vivo

(Han et al, 2008; Arieli et al, 1996). and such models, analytical techniques can be

used to study the distributions of the pairwise cross-correlations for some topological

profiles and network regimes (Kriener et al, 2009).

However, despite its generality, this classical model with random connectivity lacks

several important biological features, which complexifies the analytical approach of

the problem. In this paper, we chose to study a more realistic two-dimensional net-

work of integrate-and-fire neurons, which is more relevant biologically since it include

propagation delays (Bringuier et al, 1999; Benucci et al, 2007) and conductance-based

synapses (Vogels and Abbott, 2005; Cessac and Viville, 2008; Kumar et al, 2008; Marre

et al, 2009). We provided a detailed numerical study of its spatio-temporal correlations

for Gaussian connectivity profiles, previously introduced in the context of informa-
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tion processing (Mehring et al, 2003). Such a model would be a minimal model to

capture propagation phenomena which can be directly observed in vivo with large

scale recordings (Voltage-Sensitive Dye Imaging, multi electrode recordings, 2-photon

Imaging). Note that previous studies considered topological networks with irregular

firing (Usher et al, 1994; Kitano and Fukai, 2007), but with different modeling and

connectivity paradigms than here.

In the first part, we study the organization of the pairwise cross-correlations as a

function of the distance in generic 2D networks of integrate-and-fire neurons subject

to unstructured input, a case that will be referred as the spontaneous activity. This

irregular but tonic bombardment is supposed to simulate the effect of the retinal “dark

discharge” in thalamocortical visual networks which is detected in absence of any visual

drive. We characterize the correlation profiles as a function of distance between pairs of

neurons and their sensitivity when varying key parameters of the microscopic network

structure. In the second part of the paper, we study the behavior of the same network

when driven with synchronous inputs to study how the profile of its pairwise cross-

correlations is affected.

2 Materials and Methods

Neuron model : The simulated networks were composed of 12500 (10000 excitatory

and 2500 inhibitory) conductance-based leaky integrate-and-fire neurons with a mem-

brane time constant τm = 20ms, a leak conductance of Gleak = 10nS, and a resting

membrane potential Vrest = −80mV. When the membrane potential Vm reaches the

spiking threshold Vthresh = −50mV, a spike is generated and the membrane potential is

clamped to the reset potential Vreset = −60mV during a refractory period of duration

τref = 5ms. These parameters were kept fixed and were chosen as biologically plausible

and in line with previous studies. Only the refractory period τref was varied in addi-

tional simulations to be sure that the results found, based on 0 time-lag correlations,

were not qualitatively affected by this value. Others simulations were also performed

to check the validity of the result with larger networks, up to 100,000 neurons.

Synapse model : The synaptic interactions between these neurons were modeled as

transient conductance changes. The synaptic time course was modeled as an instanta-

neous rise followed by an exponential decay. The synaptic time constants were chosen

to be τexc = 3ms and τinh = 7ms for excitation and inhibition respectively. The rever-

sal potentials were Eexc = 0mV and Einh = −70mV.

The complete set of equations describing the dynamic of a neuron is thus given by

τm
dV (t)

dt
= (Vrest − V (t)) + gexc(t)(Eexc − V (t)) + ginh(t)(Einh − V (t))

τsyn
dgsyn(t)

dt
= −gsyn(t) + Ssyn(t)

where syn ∈ {exc, inh}, Ssyn(t) =
∑

i,k δ(t− tki ) are the incoming synaptic spike trains

where i ∈ {1, .., N} refers to presynaptic neurons and k to the different spike times of

these neurons. Here gsyn(t) is expressed in units of the leak conductance. In this paper,

we used 4nS for the excitatory conductance, and a balance of g = 16 unless stated

otherwise. The main parameters are summarized in Table 2
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Spatial organization : A cortical area of 1 mm2 was simulated as a 2D-layer-like net-

work with periodic boundary conditions and an excitatory/inhibitory neuron number

ratio of 4:1. Note that since the density of neurons is arbitrarily selected, and since the

density varies between species and cortical areas (Braitenberg and Schüz, 1998), this

value of 1 mm2 should not be taken as realistic. This scale is more in the order of a

V1 hypercolumn where local circuits preveil and long-range horizontal connections are

not included, being beyond the network size. It is therefore distinct from the larger one

usually used in neural mass models. Neurons were arranged on a grid, and even if such

a regular structure may bias slightly their connectivity (Voges et al, 2007), we checked

with additional simulations that the results remain the same if neurons had been drawn

uniformly across the layer. Every neuron was sparsely connected with the rest of the

network with a connection probability that depends on the distance lij between two

neurons in the network through a Gaussian profile

pij = e
−

l2
ij

2σ2
c (1)

where σ2
c is the variance of the connectivity profile, i.e. the spatial spread of the Gaus-

sian profile. For each neuron, K incoming connections are drawn by randomly picking

other neurons in the network that will or not create a projection according to a re-

jection method based on the Gaussian profile. The total number K of synapses per

neuron was fixed, so whatever the σc value, each neuron keeps the same number of

incoming synapses for the sake of comparability. Two connection densities were mainly

studied: a highly sparse one (with a connection density ǫ = 0.5%) and a denser one

(with ǫ = 5%). The network was considered to be in a spontaneous state when an

unstructured and stationary external input was fed into it. In the case where the local

network was stimulated, an other layer-like network projected onto the cortical net-

work in a topological manner described by another Gaussian distribution with σ2
ext as

a variance.

Delays : We used non-homogeneous delays, which depend linearly on the distances lij
through

dij = dsyn +
lij
v

(2)

where v is taken from the literature (Bringuier et al, 1999; Gonzlez-Burgos et al, 2000).

A classical value of 0.1-0.5 m/s is usually reported, and in all simulations, we used

v = 0.2m/s, and dsyn = 0.2ms.

Simulator : All simulations were performed using the NEST simulator (Diesmann and

Gewaltig, 2001) and the PyNN interface (?). Correlated input in the external layer

was built by combining Poisson processes and the Multiple Interaction Process (MIP)

algorithm (Kuhn et al, 2003).

Data Analysis : Since the maximal distance between two neurons in our network is√
2
2 ≃ 0.7mm, we divided the spatial domain in slices of 50µm width and computed

the distance-dependent spiking correlation by selecting, for each distance slice, random

pairs of neurons with a distance between them falling into the range imposed by the slice

boundaries and we estimated the Pearson coefficients on the spike counts. To be more

precise, spike trains were digitized with a time bin equal to the refractory period of the
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τm 20ms
τref 5 ms
τexc 3 ms
τinh 7 ms
Vrest -80 mV

Vthresh -50 mV
Vreset -60 mV
Eexc 0 mV
Einh -70 mV
Gleak 10 nS
∆gexc 4nS
∆ginh 16∆gexc=64nS
dsyn 0.2 ms
v 0.2 m.s−1

simtime 5500 s
ǫ 0.5%, 5%
σc [50, 1000] µm

Table 1 Parameter table summarizing all the cells and network parameters used in the sim-
ulations.

neurons, i.e 5 ms, and for each slice, we selected 2000 pairs of neurons before averaging

the Pearson correlation coefficients computed over all these selected pairs. Cells that

remained silent during the simulations were discarded from the analysis, and spiking

data were gathered during 5s of stationary simulation. For the subthreshold activity, we

selected a row of neurons in the network and we computed the cross-correlation at time

lag 0 for each pair as a function of the interconnection distance. The characterization

of this function was done by computing its integral value over distances (‘Integrated

correlation’) and its linear slope in a log-log representation (‘Scaling exponent of the

correlation’) (see Figure 5). The integrated correlations can be directly related to the

average synchrony in the network while offering a more intuitive representation in term

of distance-dependent correlations. For the network activity spike-triggered average, we

sampled randomly 100 neurons for which average was computed over the whole spike

train ensemble.

3 Topological Network Model

Cortical connectivity is still poorly understood, but is definitely not as random as it is

usually modeled in previous studies. Whether the connectivity graph is small-world (the

definition is ambiguous when considering propagation delays), clustered, or Gaussian is

still unclear, but biological evidence shows that neurons in the cortex project mainly to

their surrounding (Hellwig, 2000; Bienenstock, 1996). As a first approximation, neurons

can be considered as being connected with a distance-dependent probability following a

Gaussian profile. Even if it is well known that realistic connectivity is less isotropic and

homogeneous (see for example in V1 the orientation maps and the patchy horizontal

connectivity (Gilbert and Wiesel, 1983)), the Gaussian profile is a good description

of a small cortical area where long-range interactions are ignored. Therefore, every

neuron in our model is connected with the rest of the network with a 2D Gaussian

probability function and a fixed number of incoming synapses, while periodic boundary

conditions are used throughout the study to avoid any boundary effects. In order to

obtain in vivo-like states, we adopted the usual integrate-and-fire balanced network
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Fig. 1 Profile of the connections. A: Number of synapses as a function of the delay (and there-
fore distance) between neurons in the network, for several values of the connection spread, σc.
The corresponding mean values are represented as dotted lines. B: Distribution of interneuron
distances from one excitatory cell to all the other cells in the network

.

configuration comprising a ratio 4:1 between excitatory and inhibitory neurons (Brunel,

2000). The synaptic weights were chosen accordingly to obtain a balanced sub-threshold

fluctuating dynamics responsible for the irregular firing.

Propagation delays are known to lead to a large diversity of states in large-scale

neuronal networks (Roxin et al, 2005; Izhikevich et al, 2004). While they are often

discarded in large-scale models, under the assumption that they could be neglected in

a small cortical area, biological studies (Bringuier et al, 1999; Gonzlez-Burgos et al,

2000) have reported typical values of 0.1-0.5 m/s for conduction delays, and compa-

rable values can be observed in Voltage Sensitive Dye Imaging, where activity waves

propagate at a similar speed (Grinvald et al, 1994; Benucci et al, 2007; Nauhaus et al,

2009). Patch recordings in vitro also confirm that these delays scale linearly as a func-

tion of distance (Larkum et al, 2001) when considering the propagation from dendrites

to the soma. Thus, even for a small patch of cortex of 1mm2, with a synaptic delay of

0.2ms (due to neurotransmitter release), conduction delays are broadly distributed and

should not be neglected. Moreover some artificial oscillations could arise in network

where delays are homogeneous (Brunel, 2000). Our network was therefore built as an

artificial square lattice of 1 mm2 and we chose a propagation speed of v = 0.2m/s.

To have a clear picture of the network structure, one can have a look at Figure

1A where the distribution of the delays in the network as a function of the Gaussian

spread σc is plotted. By construction, the distributions are continuously affected by σc,

and are not Gaussian. Indeed, these functions are the product of the Gaussian profile

of connectivity and the probability to find a pair of neuron for a given distance (see

Figure 1B).

A recent study showed that the spike-triggered LFP in the awake animals could

reflect the cross-correlation between LFP the LFP and the membrane potential of the

very same cell. This result show that in term of correlations, the spiking activity of a

cell convey the same information than the subthreshold response which is n coherence

with our result for low rate regime

During the so-called spontaneous activity, every neuron in the network is stimulated

with decorrelated Poisson input. Even if in terms of numbers of synapses the synaptic

drive of cortical neurons in V1 originates mainly from the recurrent network, the efficacy
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of the feedforward thalamocortical synapses is the largest (Gil et al, 1999). To simulate

the functional balance between recurrent and feedforward input, each neuron in the

cortical layer received the same number of external synapses than the recurrent ones.

When we considered correlated input, an external layer was added on top of the network

where external units produced synchronous Poisson spike trains projecting on a subset

of the 2D network with Gaussian probability distributions. There was no delays from

the stimulation layer to the recurrent network layer.

4 Response under an unstructured noise

In the spontaneous activity regime, i.e when uncorrelated Poisson external noise was

applied to all the synapses at a mean frequency of νext = 5 spikes/s., the network

displayed waves emerging at random places which tended to propagate all over the

surface. It should be noted that such networks are not able to maintain self-sustained

activity by themselves. Several studies previously reported that these ongoing and re-

verberating regimes could be observed in networks with conductance-based synapses

(Vogels and Abbott, 2005; Kumar et al, 2008; El Boustani and Destexhe, 2009; Marre

et al, 2009), but they were all achieved in networks without any propagation delays.

The linear propagation time taken into account here (see Materials & Methods) in-

creases the average synaptic delay and therefore the neuron density that would have

been necessary to observe such a spontaneous regime. The average delay within the

present network is close to 0.75 ms for σc = 100µm, and depends on σc (see Fig.

1A). Nevertheless, it has been shown that a weak uncorrelated external input does not

alter the main statistical features of these models (Brunel, 2000; Vogels and Abbott,

2005) and their irregular activity could not be completely explained by the stochastic

nature of this background activity, such that we can still study the interplay between

spontaneous and evoked correlated activity.

As can be seen in Figure 2, large sub-threshold waves developed at the conductance

level. Waves of excitation, popping up at random places, were immediately followed by

an increase of inhibition, traveling simultaneously across the network due to the con-

nection rule and the delays. These waves are reflected in the supra- and sub-threshold

activity usually experimentally recorded (Han et al, 2008; Nauhaus et al, 2009).

To gain some insights on the role of the network structure, we varied in a sys-

tematic manner two main parameters : the spatial extent of the Gaussian profile used

for the recurrent connections σc and the balance between excitatory and inhibitory

synaptic strength g. The results are shown in Figure 3, for two different connectivity

densities, ǫ ∈ {0.5%, 5%} to show the generality of the results. The first striking ob-

servation is that for both connectivity densities, averaged quantities such as the mean

firing rate and the mean coefficient of variation of the inter-spike interval (ISI CV)

do not depend on the connectivity spread σc but are only controlled by the balance g

between excitation and inhibition (see Fig. 3A,B,E,F). A similar result has been previ-

ously observed in (El Boustani and Destexhe, 2009). At the population level, the only

relevant parameters for these macroscopic quantities are therefore the average number

of synapses received per neuron and their respective strength, not the precise lay-out

of the recurrent connectivity. There is somehow a match between the level at which

simple anatomical details should be taken into account and the scale of measurement.

Of course, this is true as long as the connections are sparse enough: in the limit case of

very small σc, we are almost in a first-neighbors situation and the local correlations are
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Fig. 2 Snapshots of the spontaneous ongoing activity in the 2D network. Neuronal responses
at the supra-thresholds (spikes) and sub-threshold (Vm) levels for every neuron in the 2D
network are shown respectively in the top and second rows. Snapshots are taken every 2 ms
for a total duration of 28 ms. The last two rows shows instantaneous input conductance maps.
Excitatory conductances are represented on third row and the inhibitory conductances in the
last row.

too strong to keep averaged quantities invariant. This is an extreme situation where

usual mean-field models are not valid anymore.

The second result concerns the irregular and oscillatory nature of the dynamics.

Typical raster plot of the observed activity regime (Fig. 3D,H, g = 16. and σc = 100µm)

shows a low-rate irregular firing, with an oscillatory activity made of spontaneous waves

(see also Fig. 2). Within these waves, neurons fire irregularly with a mean ISI CV

close to one, while the frequency of these oscillations is only slightly affected by σc
(Fig. 3C,G). Nevertheless, one can observe that by increasing the connectivity density,

the influence of σc on the frequency tends to increase. So for highly connected net-

work, one would expect a more significant impact of the connectivity on the network

oscillations.

The network state depends on the balance g between excitation and inhibition, and

on the frequency of the external noise νext. Several regimes can be observed, among

those reported in (Brunel, 2000; Mehring et al, 2003) for current-based synapses. We

mainly focus on the states displayed in the raster plots of Fig. 3D,H where the network

is in a slow Synchronous Irregular regime (SI) because we were interested in low firing

rates and irregular activity. In such slow SI regimes, the network could display distinct

waves of activity based on underlying topology and delays. Indeed, the spontaneous

activity in sensory areas such as V1 is irregular, but it is also known, with Voltage

Sensitive Dye Imaging studies (Han et al, 2008; Contreras, 2007; Arieli et al, 1996),

that traveling waves appear and propagate. The slow SI regime seemed in that respect

to be a good compromise to keep the irregularity and to promote the emergence of waves

that mimic what is observed in vivo. To have a better insight, Fig. 4 shows distinct

spatio-temporal profiles of the correlations in the case ǫ ∈ {0.5%, 5%} for two ”extreme”

connection spreads (Top : σc = 50µm, Bottom : σc = 500µm). One can clearly see the

oscillations in the temporal domain due to the slow SI regime. Nevertheless, additional

simulations shows that even in more asynchronous regimes, where correlations are less

influenced by the structure and propagation waves are disrupted, conclusions are still
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Fig. 3 Phase diagrams of the network statistics as a function of the local connectivity extent
σc and the excitatory-inhibitory synaptic strength ratio g. A-C : Phase diagram of the network
with a connection density ǫ = 0.5%. Mean firing rate (A), mean ISI CV (B) over the whole
network, as a function of σc and g. C: Mean frequency of the spontaneous oscillation generated
in the population dynamic, as can be seen in the raster plot (all excitatory neurons, i.e 10000
cells, D) of the activity for a particular regime (g = 16 and σc = 100µm, white cross), and
average firing rate with a 5ms time bin. Bottom: E-H : Same as in A-D, but with a connection
density ǫ = 5%.

.

valid (see Supplementary Figure 1). The same applies if we just increase the number of

neurons, up to 100,000, without changing the connectivity: the density does not affect

the result (see Supplementary Figure 2).

To quantify the distance-dependent correlation profile in the network at the spiking

level, we used two measures to distinguish the global amount of synchrony and the

decrease as a function of distance. Figure 5A shows a typical profile of the pairwise

cross-correlations as a function of distance. For each distance, we selected 2000 pairs

of neurons and we averaged the Pearson correlation coefficient computed over all these

pairs (see Materials & Methods section). These coefficients were computed between

the corresponding spike trains and digitized with a time bin equals to the refractory

period of the neurons, i.e 5 ms. Nevertheless, the importance of that bin size has

been checked and Supplementary Figure 3 shows that for a larger time bin, the main

results are qualitatively similar. The integrated correlation is defined as the integral

over distances, and it reflects the global amount of synchrony present in the network.

Figure 5B shows that in a log-log scale, the decay of these pairwise correlations as a

function of distance is approximatively linear. The slope of this linear region will be

referred as the “Correlation Scaling Exponent” obtained by a least square fit. Similar

analysis can be performed at the membrane potential level : correlation coefficients at

0 time-lag are used to assess the correlation between two membrane potentials, and

the two measures described in Figure 5 can also be applied.

The exhaustive analysis of these correlation profiles in the phase space previously

explored in Figure 3 is summarized in Figure 6, for a connection density of ǫ = 0.5%.

Qualitatively similar results can be obtained for higher connection density (see Sup-

plementary Figure 4). The correlations have been analyzed both at the spiking level

and at the Vm level. In Figure 6, panels A and D show the integrated correlation and
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Fig. 4 Spatio-temporal profile of the spiking correlations in the networks, for g = 16 and for
two values of σc: 50µm (Upper panels), and 500µm (Lower panels). Insets shows the spatial
decay for the 0-time lag correlations, the curve used to compute the ’integrated correlation’
and the ’correlation scaling exponent’.

Fig. 5 Quantification of the distance-dependent correlation profile within the topological net-
work. A: Typical profile of spiking pairwise cross-correlations as a function of distance. The
integrated correlation is the integral over all distances. B: The correlation slope is fitted by a
line in a log-log scale.

.
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Fig. 6 Comparison of the distance-dependent correlations at the spiking and subthreshold
(Vm) levels, for ǫ = 0.5%. A-B : Cross-correlation scaling exponent, analyzed either at the
spiking level (A) or at the Vm level (B). C : Cross-correlations scaling exponents at the Vm

level (observed in panel A) plotted against values at the spiking level (observed in panel B).
Same color-code as in Figure 3, illustrating the firing rate of these particular points. D-E :
Integrated correlations of the distance-dependent correlation profile, analyzed either at the
spiking level (D) or at the Vm level (E). F : Integrated correlations obtained at the Vm level
(observed in panel D) plotted against the values obtained at the spiking level (observed in
panel E). Same color-code.

.

correlation scaling exponent for correlations measured on spike trains, and panels B

and E show these measures on membrane potentials. In both cases, one observes that

the correlation scaling exponent does not depend on the connectivity parameters (see

Fig. 6A-B). Except in the Synchronous Regular (SR) regime where large oscillations

corrupt these measures, the scaling exponent is almost independent of σc and of the

balance g and tends to 0 on average. Figure 6C shows the values of the cross-correlation

scaling exponent as measured in the spike trains against values measured on the basis

of Vm. Since both values are invariants, a uniform cloud of points is found without

any particular statistical bias. In Figure 6D-E, one can see the integrated correlations,

again measured on spike trains and on Vm. In both cases, the balance g dictates the

amount of synchrony which is present in the network in line with our previous results

on averaged quantities. The more g is increased, the more dominant the inhibition is

and the less synchronous the network activity is. Nevertheless, by plotting the inte-

grated cross-correlations measured at the spiking level compared to those recorded at

the Vm level (Fig. 6F), interestingly, for low rate regimes, the relation between the inte-

grated spiking correlation and the sub-threshold correlations is almost linear and then

increases in a nonlinear and monotonic manner for higher firing rates. The clusters are

isolated according to the network firing rate shown in color code identical to the one

used in Fig. 3. Therefore, in these networks configurations, the integrated correlation

measured at the subthreshold level is uniquely determined by the spiking correlation.

To study the influence of the heterogeneity in the connection scheme, the ratio

between the spread of the Gaussian profile used to connect the excitatory and the

inhibitory neurons within the network was varied. Figure 7A illustrates how these two
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Fig. 7 Changing the spatial spread σc of the excitatory and inhibitory connections indepen-
dently. A : Schematic illustration explaining the explored parametric region in other panels. In
red, σinh is held constant while σexc is varied, while in blue, it is the opposite. In all subsequent
panels (B,C,E-G), the intersection point is represented by the dashed gray line. B, C, E, F,
G : Mean firing rate, cross-correlation scaling exponent, population activity peak frequency,
mean ISI CV and integrated correlations as a function of σexc or σinh. D, H : Time-averaged
activity maps of the two pathological cases that emerged for low σexc value (D) or σinh value
(H).

parameters σexc and σinh were changed. Instead of exploring the whole parameter

space, only two lines were explored: one with σexc fixed to 200 µm while σinh was

varied in the range [0 to 1 mm], and another one where σexc was varied for a fixed σinh
(respectively red and blue curves in Figure 7). As one can see in the Figure 7B-E-F,

averaged quantities such as mean firing rate, population peak oscillatory frequency, or

mean ISI CV are hardly impacted by these parameters, as soon as σexc or σinh are

not too small. If they are, one can observe a symmetry breaking pushing the network

into a pathological states (Fig. 7D-H) with very localized bumps of activity sponta-

neously jumping from a symmetric state to another. This scenario is reminiscent of

the ”hotspots”-like patterns obtained by (Usher et al, 1994) with Mexican-hat con-

nectivity profile and hybrid neurons. Our finding is thus compatible with their model

when the network connectivity is local enough to generate strong topological correla-

tions. Otherwise, one can again notice that the cross-correlation scaling exponent is

rather insensitive to the connectivity spatial spread and close to 0 (Fig. 7C), while the

integrated cross-correlation is affected by the spread (Fig. 7G). Increasing the spread

of inhibitory projections while keeping that of excitatory neurons constant increases

the overall amount of synchrony within the network, by diluting the inhibition. On

the contrary, increasing the spread of the excitation by keeping fixed that of inhibition

decreases the amount of synchrony by diluting excitation.

Finally, we explored the role of propagation delays and their influence on the spa-

tial spread of distance-dependent cross-correlations within the network. In particular,

we studied the impact of interaction velocity for different network structure param-

eters: the connection spatial spread and the connection density. For highly localized

connectivity (σc = 50µm , Fig. 8A,C) changing the velocity has no significant effect

on the correlation profile, for both low and high connectivity densities. Indeed, when

only nearby neurons are connected, the effective delay for various velocities are still
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small enough to leave the profiles unaffected. Similarly, when a larger Gaussian profile

is used in a network with high connectivity density (ǫ = 5%, σc = 200µm, see Fig.

8D), we found that changing the velocity induces a higher variability in the correlation

profiles, without any consistent variation. However, when considering large connec-

tivity spread in very diluted networks, where the propagation delays become crucial

(ǫ = 0.5%, σc = 200µm, see Fig. 8C), the integrated correlation increases with velocity.

It has to be stressed that the case σc = 50µm in Fig. 8A,C is a limit case, because the

network is then close to a pathological state where the neuron are almost in a all-to-all

nearest-neighbor connection scheme. The fact that the bottom rows of Fig. 6. A,B,C,D

are different is consistent with the observation that in Fig. 8 there is a difference in

the integrated correlations for the two values of σc used. In fact, one has to keep in

mind that the shapes of the curves in Fig 8A,C are valid only for very local network

(σc = 50µm), and that in all the other configurations, curves would look like those in

Fig 8B,D). Altogether, we conclude that propagation delays have a significant effect on

the spatial correlation profile only when long-range interactions are as important as lo-

cal interactions. The linear relationship between delays and distances used in the model

can be considered as too strong. Indeed, for very dense and intricate circuit, as the one

studied in (Oswald and Reyes, 2008), this relationship is not that obvious. Indeed, if

there are evidences that conduction times within dendrites and/or axons are linear,

this linearity due to the wiring scheme may be more noisy. Nevertheless, we checked

that the invariance and the results are still valid when delays are only correlated with

distances (see Supplementary Figure 5), such as dij = dsyn +
lij
v (1 +N (0, σ)), where

N (0, σ) is a Gaussian noise of variance σ = 0.25.

5 Effect of Structured Stimulation

Having studied the response of the network under unstructured stimulation (Poissonian

input, mimicking the spontaneous ongoing activity coming from the thalamus), we were

interested in adding an additional layer to inject spatial correlations (representing the

sensory drive) in the network. More precisely, we simulated a layer of Poisson sources

arranged also in a 2D plane (Fig. 9A), connected to the recurrent network with a

divergent Gaussian spread with a variance σ2
ext, and acting as compound processes

made with Poisson sources and Multiple Interaction Processes (Kuhn et al, 2003). The

combination of these two processes allowed us to control, with a continuous parameter

c ∈ [0, 1] (Fig. 9B), the amount of synchrony send to the network while keeping the

input mean output firing rate νext constant. To be more precise, c is the percentage

of neurons that will emit simultaneous spikes during some volleys, appearing at a

frequency cνext. Each external cells acts therefore as an independent Poissonian source,

at a frequency (1−c)νext, and shares global inputs imposed by the MIP at a frequency

cνext.

Figure 10 shows the response of the network for four external input synchrony levels

c ∈ {0, 0.05, 0.1, 0.2}, and for different spreads of the external input divergence σext.

In Figure 10A, four typical raster plots are represented for these four levels of syn-

chrony with an identical external input rate fixed at 5 spikes/s (as in the unstructured

case). The more c is increased, the more efficiently the synchrony will trigger strong

responses in the recurrent network, while, at the same time, decreasing the general

firing rate by forcing every neuron in their refractory period (Fig. 10 B). For averaged

quantities such as the mean firing rate and ISI CV (Fig. 10B,E), one can notice that
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Fig. 8 Influence of the delays on the cross-correlation profiles. The average pairwise Pearson
correlation coefficient is plotted in a network with a connectivity density ǫ = 0.5%, as a
function of the distance within neuronal pairs, for four distinct velocity values. Error bars
show the standard error of the mean. Two Gaussian profiles are considered. A: a very local one
(σc = 50µm). B: a broader one (σc = 200µm). C-D : Same as A-B, but in a denser network
with ǫ = 5%.

Fig. 9 Schematic view of the input layer used to inject spatial correlations. A : [Taken from
(El Boustani et al, 2009)] An additional 2D layer of sources is added, where each source
connects the recurrent network with a Gaussian profile of standard deviation σext in a divergent
manner. B : Illustration of the compound process made with a Multiple Interaction and Poisson
processes, shown as raster plots of the activity for 2500 cells in the external layer, for several
values of c. The parameter c controls the percentage of co-active neurons into synchronous
volleys.
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Fig. 10 Evoked activity under spatially correlated stimulations for ǫ = 0.5%. A: Three raster
plots for 2500 neurons and different synchrony levels in the input. B, C, E, F: Mean firing rate,
cross-correlation scaling exponent, mean ISI CV and integrated correlation in the recurrent
network as a function of the input divergence σext, for the four levels of synchrony. D : Power
spectra density for a fixed σext = 200µm, and the four levels of synchrony.

the external divergence σext of the feedforward projection does not have any influence,

a phenomena already observed in the presence of unstructured inputs. Increasing the

external synchrony will increase the frequency content of the oscillatory activity in the

population dynamics because of the stochastic nature of the input (Fig. 10D). Regard-

ing the correlation profile as a function of distance, increasing the synchrony c induces

an increase in the integrated correlation of the recurrent network (Fig. 10F), but more

importantly, we observed that the external correlation is now able to change the corre-

lation scaling exponent of the distance-dependent correlation profile, especially when

the external connectivity spread is narrow (Fig. 10C).

These changes are summarized in Figure 11, where we chose σext = 50µm for the

sake of clarity. In Figure 11A, one can observe the increase in the integrated correla-

tions following an increase of the external synchrony. The more the network receives

strong synchronous spiking volleys, the stronger the pairwise correlation coefficients

are. As one can see in Figure 11B, increasing the external synchrony also affects the

cross-correlation scaling exponent of the distance-dependent correlation profile. Adding

synchrony favors synchronous volleys that are strong enough to trigger spiking activity

in the recurrent network at any position simultaneously. This global activation pattern

creates in turn long-range correlations in the network. Conversely, for narrow stimu-

lation spatial spread without any additional spatial correlations (no synchrony), small

assemblies of neurons are becoming strongly correlated in a spatial range shorter than

the one observed in the spontaneous activity.

The genesis of these processes can be better understood by studying the presynaptic

pattern leading to spike, called Network Activity Spike-Triggered Average (NASTA).
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Fig. 11 Change in the distance-dependent correlation profile as a function of the level of
synchrony in the input for ǫ = 0.5%. A : Correlation scaling exponent in the recurrent network
as a function of the external synchrony. B : Integrated correlation in the stimulated layer as a
function of the external synchrony.

.

This is shown in Figure 12A, where the recurrent inputs are mainly responsible for

the emission of a spike for low levels of external synchrony. The fact that a localized

PSTH is obtained for c < 10% means that the network activity of the surrounding

neurons 2 ms earlier will be driving the post-synaptic neuron to spike. The more c is

increased, the less important is the recurrent connectivity contribution and the stronger

are the external spiking volleys to trigger by themselves a spike. In the NASTA spatio-

temporal domain (Figure 12B), one can see that the broad temporal spread around the

postsynaptic neuron account for the propagation delay with the presynaptic neurons in

the network.Here again, the external spike volleys have a role in flattening the spatial

correlation and sharpening the temporal spread of cross-correlation when increasing

the external synchrony.

6 Discussion

Invariant Macroscopic Statistics In this paper, we have studied balanced network mod-

els with conductance-based synaptic interactions and different spatial profiles of con-

nectivity. Our main finding is that such balanced networks own connectivity-invariant

quantities as long as each neuron is sparsely connected to its neighbors. Surprisingly,

this result holds even for very narrow Gaussian connectivity. This is a very encour-

aging result which shows that mean-field approaches, where no topology is taken into

account, can offer a reliable description of the network at a macroscopic scales as long

as the dynamic regime of conductances remains stationary and homogenous across the

network.

For instance, when modeling data such as Voltage-Sensitive Dyes Imaging (VSDI)

recordings, there is a priori no need to know the fine details of the connectivity within

each pixel. In particular, we know that for the spontaneous activity regime, the mean

firing rate, the mean ISI CV and the overall synchrony depend mainly on the synaptic

E/I balance ratio (except for the first-neighbor extreme case). We also observed that
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Fig. 12 Network activity spike-triggered average (NASTA) as a function of external synchrony
for ǫ = 0.5%. A : NASTA for one neuron. The maps show the spatial network activity averaged
over all its spikes, 2 ms before, for several level of external synchrony. B : Same as in A, but
the activity is now plotted only for the central spatial line of the map and as a function of
time.

the spatial correlation decay in this regime does not depend either on the connectivity

extent nor on the conductance balance in the irregular regime. However, we do see a

dependency of the correlation decay on the connectivity density (which is anyway a

structural averaged quantity).

Similar conclusions apply to the case of networks subject to structured input (rep-

resenting external correlation patterns imposed by the sensory drive). We showed that

the fine details of the connectivity are less influential than averaged quantities such as

the overall synchrony. It should be thus possible to find a simple relation describing

the spatial correlation decay only in terms of macroscopic quantities such as the mean

synaptic input per neuron or the mean synchrony in the external drive.

Thus, we observed numerically that most of the first- and second-order statistics

in these networks are ruled by averaged macroscopic structural quantities. Therefore,

it seems that for these models, structural (synaptic weights, mean synaptic input)

and dynamical (mean firing rate, correlations) statistics are related to each other in a

hierarchic manner as already observed in a simpler setting (Liu and Nykamp, 2009). We

therefore do not conclude that connectivity is completely ”decoupled” from correlation,

but rather that this detail of description is irrelevant at a large-scale level of observation.

The underlying mechanistic explanation is directly linked to the way these balanced

activities are generated in sparse networks, and we show how these dynamics break in

the extreme case of dense local connectivity.

Supra- and Sub-threshold Correlations Several studies have focused recently on the

second-order transfer function of spiking neurons. More precisely, knowing the corre-

lation structure in the presynaptic activity of one or two neurons sharing an input,

one can ask which are the spiking auto-correlation of each neuron and/or their cross-
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correlation. It has been shown recently that for the low-correlation regime, the supra-

and sub-threshold activities are linearly related with a proportionality factor which

mainly depends on the firing rate of these neurons (de la Rocha et al, 2007; Shea-

Brown et al, 2008). In our situation, conclusion are harder to reach from an analytical

point of view. However, we found a monotonic relation between the supra- and sub-

threshold signal correlation proving that both levels offer a similar description of the

correlation state in the network. For spontaneous activity (uncorrelated inputs), these

correlations are generated by the recurrent connections within the network, so that

this monotonic relation must satisfy a self-consistent relation in order to be stable.

Describing this relation through close analytical equations for simpler models would

bring us a step further in the understanding of recurrent network dynamics.

Comparison with other studies Previous studies intended to describe the relationship

between network structure and dynamics. For example in (Usher et al, 1994), the

authors studied networks displaying irregular spiking activity and long-range temporal

correlations. They reported that in a small network with “hybrid” neurons violating

Dale principle (Kriener et al, 2008), and connected in a Mexican hat manner (local

excitation and long-range inhibition), they were able to generate network dynamics

with a high degree of variability. However, their network regime was not balanced,

and the irregular activity in the network was generated by ”hotspot”-type activity

patterns (similar to those described in Figure 7D-H), instead of waves. In (Kitano

and Fukai, 2007), the authors report that in small and highly clustered small-world

networks, the spiking irregularity is strongly dependent on the synaptic weight balance

and the small-world rewiring parameter. However, this approach is far from the sparse

connectivity we are considering here, and it does not match the mean-field requirements

for a suitable prediction of macroscopic dynamical quantities. Nevertheless, in their

computation of distance-dependent correlation and beyond the local region, there is a

large region where the correlation scaling exponent does not depend as strongly on the

connectivity scheme (see Fig. 5 of (Kitano and Fukai, 2007)). Even if these results are

hardly comparable to the present ones, due to huge differences in the neurons models,

network sizes and wiring scheme, several conclusions regarding the invariance of mean

quantities hold in both studies.

Shaping the Correlation Landscape with Correlated Input When the network is fed with

uncorrelated input, it was not possible to change the distance-dependent correlation

scaling exponent by changing the connectivity extent or the synaptic weight ratio.

However, changing the connectivity density or the correlations in the input either

broadens or shortens this distance-dependent correlations. This could be also easily seen

through the network activity spike-triggered average where the correlation landscape

becomes uniform in space and narrow in time by increasing synchrony. Taken together

with the fact that spiking and sub-threshold correlations have a monotonic relationship,

this could be a way to estimate the impact of sensory input on ongoing activity using

measurements such as VSD imaging, single-cell unit activity, or local field potentials.
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Y (2009) Network-state modulation of power-law frequency-scaling in visual cortical

neurons. PLoS Comput Biol 5(9):e1000,519

Gil Z, Connors BW, Amitai Y (1999) Efficacy of thalamocortical and intracortical

synaptic connections: quanta, innervation, and reliability. Neuron 23(2):385–397

Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J

Neurosci 3(5):1116–1133
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Supplementary Figure 1 Influence of the network regime. A diluted network (ǫ = 0.5%)
with g = 16 is set into an AI state (see raster plot for 2500 excitatory cells). Subpanels shows
mean firing rate (with a time bin of 10 ms), ISI CV, and the two parameters computed from
the correlation profile as functions of σc.
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Supplementary Figure 2 Results obtained in a dense network with 100000 neurons, ǫ = 5%,
g = 16, νext = 15 spike.s−1. Raster plots of the activity for 2500 excitatory cells, with
σc = 0.1mm. Subpanels shows mean firing rate, ISI CV, and the parameters computed from
the correlation profile as a function of distance, for several σc. Dashed dot lines shows the
curves in the network with 12500 cells.

Supplementary Figure 3 Comparison of the distance-dependent correlations at the spiking
and subthreshold (Vm) levels, for ǫ = 5% and a larger bin to gather correlations (T = 20ms).
A-B : Cross-correlation scaling exponent, analyzed either at the spiking level (A) or at the Vm

level (B). C : Cross-correlations scaling exponents at the Vm level plotted against values at
the spiking level. Same color-code as in Figure 2, illustrating the firing rate of these particular
points. D-E : Integrated correlations of the distance-dependent correlation profile, analyzed
either at the spiking level (D) or at the Vm level (E). F : Integrated correlations obtained at
the Vm level plotted against the values obtained at the spiking level. Same color-code.
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Supplementary Figure 4 Comparison of the distance-dependent correlations at the spiking
and subthreshold (Vm) levels, for ǫ = 5%. A-B : Cross-correlation scaling exponent, analyzed
either at the spiking level (A) or at the Vm level (B). C : Cross-correlations scaling exponents
at the Vm level plotted against values at the spiking level. Same color-code as in Figure 2,
illustrating the firing rate of these particular points. D-E : Integrated correlations of the
distance-dependent correlation profile, analyzed either at the spiking level (D) or at the Vm

level (E). F : Integrated correlations obtained at the Vm level plotted against the values
obtained at the spiking level. Same color-code.

Supplementary Figure 5 Correlation Profile in a network with delays correlated with dis-
tances. Left: Distribution of the delays vs. distances for σc = 100µm. Red line shows the linear

relationship between delays and distances dij = dsyn+
lij
v
. Middle and Right: Variation of the

Integrated CC and the CC Scaling exponent in a sparse network ǫ = 0.5% with g = 16, as
functions of σc.



12.1 - General comments 113

12 Discussion

12.1 General comments

Comparison with previous results in literature It should be noted that several studies did
not find the invariants we found here in topological networks. Of these studies, Usher et al.
(1994) is hardly comparable with our model for several reasons. First, in their study they
were looking for networks displaying irregular spiking activity and long-range temporal cor-
relations. To do so, they did not used the balanced network paradigm but instead a topological
network with very specific (and sometimes unrealistic) features. Neurons in their network
violated Dale’s principle by which a neuron should be either excitatory or inhibitory. These
“dual-nature” neurons are known to be appropriate for generating AI regimes in sparsely
connected networks (Kriener et al., 2008) although there existence has never been reported
in neocortex (one example exists in Hermissenda). These neurons are also connect to their
neighbours through a Mexican hat connectivity profile, which is also different from the con-
nectivity schema we chose to study based on experimental and review studies (Hellwig, 2000,
Bienenstock, 1996). They could succeed in generating network dynamics with a high degree
of variability which was mainly produced by the “hotspot”-type activity patterns. Recent VSD
imaging experiments that offer observation of superficial cortical dynamics with high tempo-
ral resolution support the idea of travelling waves such as those we observe (Han et al., 2008,
Contreras, 2007, Arieli et al., 1996) whereas attractors of “hotspots” have rarely been re-
ported in ongoing activity. However these authors report only two connectivity configurations
in the paper, namely the Mexican hat and the random connectivity that displays oscillatory
synchronous activity because the network state is unbalanced. However, electrophysiological
experiments tend to support the idea of balanced conductance inputs (Shu et al., 2003, Haider
et al., 2006, Hasenstaub et al., 2005, Monier et al., 2008) with local connectivity patterns that
can be roughly approximated by a Gaussian profile, as in our study.

Another type of connectivity pattern that has been studied is the small-world network (SWN)
type. In the work of Kitano and Fukai (2007), they chose to focus on networks of biophysical
neurons following this connectivity pattern and in particular for a very small SWN p param-
eter (highly clustered). In these situations, very few synapses are randomly redistributed (on
average 3.1 for most of their figures) leaving a network with essentially local and extremely
dense connections. Even if this situation is far from the one we are considering (sparse con-
nectivity), their results are comparable to ours.

Ongoing activity In contrast to the Frozen Paradigm network, we do not use here a self-
sustained network with reverberating activity, and an external noise was injected into all neu-
rons to settle the network into the Synchronous Irregular regime. Indeed, self sustained states
in random networks are a minor fraction of all the possible states, and their existence is sub-
ject to several parameters. The network must be very diluted, in order to prevent too strong
synchronous inputs (see Kumar et al. (2008b), Marre et al. (2009b)), and the conjunction of
the propagation delay and the refractoriness must allow a certain amount of activity to be
propagated to the network. In the Frozen Paradigm network, since we wanted to have a fully
deterministic and chaotic dynamical system, we used a network set into such a self-sustained
state. A brief transient pulse of activity is sent to the network, then activity is reverberated
and maintained for a long transient time. Axonal velocities were infinite, with instantaneous
synaptic transmission, and therefore ongoing activity was easy to sustain. Here, nevertheless,
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Figure 18: Left: Firing rate in a random network of 10000 neurons, without any structure,
stimulated with an initial bump of activity for 100 ms, for several distributions of delays.
Right: Distributions of the delays

.

obtaining such sustained regimes was more difficult, and to avoid extinctions of the network,
subject to correlations and to a rather dense connectivity, we decided to add external noise to
the system, to mimic the afferent inputs from the surroundings that may be received by the
topographical area. The amount of external noise added is rather low, and as found in Brunel
(2000), it can shift the activity from a synchronous irregular regime (the most common here)
to an asynchronous irregular one, mainly noise driven (see Supplementary Figure 1).

It has to be noted that the propagation delay is the main parameter preventing sustained ac-
tivity. To show this, we performed additional simulations in a self-sustained network where
the distribution of the delays is similar, but with a completely randomized network structure.
Figure 18 shows that increasing the spread of the delays (and therefore the mean delay in the
network) reduces the lifetime of the self-sustained activity (the network is stimulated with an
initial bump of activity during the first 100 ms). In such a 10000 cell network, activity is
self-sustained for dsyn = 0.2ms (dsyn is the synaptic transmission time), but as soon as one
adds a non-zero velocity (see previous article), this activity vanishes. We do not argue that the
structure does not play a role, but delays and especially the mean delay seem to be here the
crucial parameters.

External Stimulation As in the PLoS paper, presented in Part II, we used a multiple inter-
action process (MIP) (Kuhn et al., 2003) to stimulate the network and inject spatial correla-
tions in the network. As we saw in the Frozen Paradigm, choosing an appropriate stimulus
to stimulate neuronal networks is not straightforward. The MIP is an easy way to generate
instantaneous correlations and to avoid strong volleys of synchrony, but as the output firing
rate of the MIP process depends on the correlation coefficient, we compensate with a Poisson
process to keep the total external input fixed (see Equation 12).

F = MIP(cFext)+POISSON((1− c)Fext) (12)

Only low coefficients of synchrony ∈ [0,0.2] were used. In order to get a better insight and
compare our results with those of Kuhn and colleagues (see Fig 1C of Kuhn et al. (2003)),
we have displayed in Figure 19 a raster plot of the activity of 500 neurons, with c = 0.1, for
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Figure 19: Illustration of the stimulation used in the ‘thalamic layer’, and comparison with a
pure MIP stimulation. Up: raster plots of 500 cells and the firing rate during 250 ms, generated
with a pure multiple interaction process (MIP) with rate 200 Hz and c = 0.1 (leading to spikes
trains at a frequency cF = 20 Hz). Down: mixture of a MIP process at 20Hz and a Poisson
source (see Equation 12), again with c = 0.1

.

both protocols: MIP only (with a mother spike train at 200 Hz), and the MIP/Poisson mixture.
Of course, the parameter c is not directly related to the amount of synchrony in the input, but
we could obtain a whole range of possible correlations with the same firing rate. It has to be
stressed that the MIP process does not avoid bumps of synchrony: by pruning spikes from a
mother process with a probability (1-c), when considering large populations, MIP generates
large volleys (see Supplementary Figure 19)

The MIP is clearly not the only way to generate correlated spike trains in order to stimulate
networks. Others techniques have been developed, for example in Brette (2008), and gen-
erative models such as the Glauber model could also be used to generate raster plots with
controlled temporal correlations (Marre et al., 2009a).

12.2 Toward a mean-field-based description of topographical networks

The results of this topographical study are encouraging, because they show that depending on
the scale you are looking at, the fine details of the underlying connectivity may not be neces-
sary to explain the activity of the network. If you are interested in macroscopic and averaged
measures, such as averaged firing rates, or global correlations over a whole population, then
the fine structure in a local area is irrelevant, and in sparsely connected balanced networks,
mean dynamical variables depend on mean structural variables. As shown in the main results
section, it is mainly the state of the network (here the Synchronous Irregular regime, and the
balance g between excitation and inhibition) that controls the profile of the spatio-temporal
cross-correlations. Nowadays, recording techniques such as voltage sensitive dye give access
to the averaged activity of the superficial layers over a rather large area of the cortex. In each
pixel of the CCD camera, capturing the light emission which is proportional to the depolariza-
tion level of the neurons, VSD imaging record the averaged depolarization of a small group
of neurons. Under the assumption that this group of neurons can be modelled as a random
balanced network, which is, we agree, a “strong” assumption, its averaged activity (firing rate,
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Figure 20: Schematic drawing of a mean field approach to infering anatomical connectivity
from macroscopic dynamics. Microscopic activity generated by a particular connectivity ma-
trix is recorded at a macroscopic scale, as population averaged activity, and one can try to
infer a mean connectivity matrix at this macroscopic scale by finding the optimal coupling
between a network of mean fields that gave rise to the observed activity.

variance) given by the VSD pixel can be used, knowing the existence of generic invariants,
to infer some key parameters within this group of neurons. For example, the average excita-
tory/inhibitory couplings, the amount of external noise. Under this approximation, that each
pixel can be considered as a random balanced network, whose dynamics could be estimated
by mean-field equations, the full problem is therefore to study the coupled system made of
several of those mean-fields, interacting one with the other. A schematic example of such an
idea is represented on Figure 20. This is an inverse problem: knowing the averaged dynamics
(mean and variance), given by the VSD data, try to find the optimal parameters/couplings with
a network of mean-fields (biophysical models) to fit the data.

Preliminary results, obtained with simple binary neurons, show that the resolution of such
an inverse problem may be feasible. Binary neurons are described by variables σi ∈ {0,1}.
The state of the neuron i is given by its transfer function which in this case is an Heaviside
function:

σi(τ) = Θ(I(τ−1)) =
{

1 if I(τ−1)≥ 0
0 if I(τ−1)< 0

For mean-field models in irregular regimes, a Markovian description can be adopted to de-
scribe the average activity of mesoscopic populations (El Boustani et al., 2009). The corre-
sponding transfer function for i ∈ {1, ...,N} populations is given by:

P(mi
τ|{mk}τ−1) =

√
Ni

2πνi(1−νi)
exp
(
−Ni

2
(mτ

i −νi)
2

νi(1−νi)

)
(13)
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where mτ is the activity at time τ, mτ−1 the activity at time τ− 1, Ni the number of neurons
and νi the firing rate of population i.

The transfer function νi(mτ−1
k ) gives the mean activity of the population i knowing the pre-

vious state of all populations. These functions also depend on the coupling between every
populations and we can use a maximum likelihood estimation to find these couplings from
the activity. In the case of populations made with binary neurons, we have a sigmoidal trans-
fer function to define the transfer function of a single population:

νi({mk}τ−1) =
1

1+ exp(−∑
N
j=1 Ji jmτ−1

j − Iext
i )

(14)

where J ji are the coupling between population i and all the other, Iext is an external noise term.
With integrate-and-fire neurons and current based synapses, the transfer function is (Brunel
and Hakim, 1999):

νi({mk}τ−1) =


τ

ref + τm
√

π

∫ V thresh
i −<Vi>√

2σ(Vi)

V rest
i −<Vi>√

2σ(Vi)

du eu2
(1+ er f (u))



−1

(15)

with

<Vi >=Vrest + τsyn(
n

∑
j=1

Ji jmτ−1
j + Jext

i ν
ext
i )

and

< σ
2(Vi)>=

τ2
syn

2(τsyn + τm)
(

n

∑
j=1

J2
i jm

τ−1
j +(Jext

i )2
ν

ext
i )

where, for each population i, Vrest is the resting potential of the integrate-and-fire neurons,
V thresh their spiking threshold, τref their refractory period, τm their membrane time constant
and νext the frequency of the external noise.

And the problem is then to find:

Ĵi j, Îext
i = max

Ji j,Iext
i

log

(
∏
τ,i

P(mi
τ|{mk}τ−1 ,Ji j, Iext

i )

)

Knowing the averaged activities of each pixel, one can try to infer the couplings that are more
likely to have led to this activity. The constraints are given by the VSD recordings, and a bio-
physical model is used to invert the problem and, having the dynamics of a network of mean
fields, guess the couplings. This idea should be developed further, because such a tool could
reveal hidden anatomical structure that may not appear with simple cross-correlation mea-
sures. The case of correlated activity between populations should be more carefully studied,
because the mean field approach described does not take those correlations into account, and
assumes independence within populations. The resolution of the inverse problem depend on
the observed activities. In asynchronous irregular regimes, the one mainly observed in vivo,
this is rich enough to imprint, into the dynamical variables and their fluctuations, the influence
of the connectivity. But in epileptic states (Synchronous Regular), where all the network is
oscillating at a fixed frequency, the dimension of the activity is too low to constrain enough
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the inverse problem. Further works should be continued in that direction. Such a conceptual
framework may also be applied to other data type. As the Generalized Linear Models (Pillow
et al., 2008), it can be a tool to unravel connectivity based on spatio-temporal correlations not
within single neurons, but within populations of neurons. It may also be applied to calcium
signals obtained by 2-photons imaging.
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13 Introduction

Each millisecond, millions of electric signals are travelling in parallel from neuron to neuron,
from cortical area to cortical area, converting almost instantaneously sensory inputs into active
behaviour. Each millisecond, trillions of synapses are dynamically adapted, their weights
being modified according to the past and present electrical activity in order to store and to
enhance information transmission and reliability in this conversion procedure. Modification
of these connection strengths between neurons in response to a particular external stimulation
is supposed to be one of the key processes responsible for memory and information storage.

Several hypothesis have been made regarding the influence of the neuronal activity on the
synapses, during the epigenetic development. Since the particular and exhaustive wiring
scheme of the brain is not encoded genetically, it is commonly assumed that the topological
structure of the neuronal network is dynamically rewired or refined during its development.
Following the seminal works of Wiesel and Hubel (1965), Wiesel (1982) proposed a theory of
plasticity for the development of the visual system (retina-LGN-cortex) with the “functional
verification” hypothesis: functional connectivity is validated by the activity, stabilizing pre-
existing connections and allowing the emergence of invariant feed-forward projections. The
chemoaffinity theory, formulated by Sperry (1963), explains the genesis of mamalian visual
systems in the retinotectal system with the idea that axon guidance and synaptogenesis pro-
ceed according to restrictive chemical markers between pre- and post-synaptic neurons. Both
could be linked to the selective stabilisation theory of Changeux and Danchin (1976), where
connections in the visual cortex or the neuro-muscular junction are supposed to be genetically
specified between classes of cells, and gradually refined with the activity.

Many biological processes can act, on several time scales, to form and modify synaptic con-
nections. Finding the exact mechanism by which the synapses between neurons are strength-
ened or weakened is a fundamental goal in the comprehension of the learning properties of
the brain. Among all these plasticity mechanisms, associative plasticity is the one responsi-
ble for synaptic changes resulting from the association of two events. The classical view of
associative memory in the brain is to view memories as cell assemblies or synfire chains that
may have been co-activated once, and since this co-activation led to reinforcement of their
coupling synapses, a memory may be recalled with a partial reactivation of this cell assem-
bly, such as what was shown in Part II. Memories can be broadly distributed among cortical
networks, spanning several sensory areas. In the neocortex, which is a cortex able to establish
associations, this is particularly true, and multi-modal memories can be seen as an illustra-
tion of these cells assemblies. Having a particular picture in mind about you riding a bicycle
on a windy road while smelling the odour of the freshly cut grass is a multi-modal associ-
ation which can be recalled just by hearing again a particular sound first heard during this
experience. Understanding how and why some neurons in distinct sensory areas succeed in
establishing such associations is crucial to elucidate the learning problem faced by the brain.

With the Frozen Paradigm (Part II), we showed that statistics of the ongoing activity can be
valuable, from a reliability point of view, when used as inputs to the system. With the topo-
logical network (Part III), we gained a better understanding of the dynamics and the structure
of the activity in more realistic networks. In this Part, I would like to define the background
and current views about the different kind of learning achieved in neuronal networks, in order
to close the story of the Frozen Paradigm. If ongoing activity shares some statistical property
with external inputs, in such a way that they are transmitted more efficiently into the network,
then plasticity would be the missing piece allowing the storage of particular statistics and the
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shaping of network activity. By establishing a match between ongoing and external activity,
learning would tune the network to enhance information transmission within it, and this could
be a guiding optimization principle constraining epigenetic development.

After having briefly reviewed the two main philosophies in machine learning, supervised and
unsupervised learning, used to store information and memories in neuronal networks, I will
focus more deeply on unsupervised learning theories and some experimental findings or ob-
servations made recently that have promoted the emergence of the concept of spike timing
dependent plasticity (STDP). We will see how such a computational framework is attractive
for storing information in networks of spiking neurons, but will also raise some key limita-
tions and problems concerning the concept. The problem of memory retention in large scale
neuronal networks is crucial, and based results, obtained in topographical networks such as
the one explored in the previous Part, we will try to shape ongoing activity by external stimu-
lations.

13.1 Supervised learning

Supervised learning, the more commonly used approach in artificial intelligence, is a machine
learning framework in which where an error signal (or a reward signal, if we speak about
reward learning) is present to instruct the system what should be learned, and when. Positive
actions and/or behaviours and/or patterns produced in front of a set of learning stimuli are
stored in order to produce a correct response to a new set of stimuli, by generalization. The
system learns associations based on a list of training examples under the form (x̂, ŷ), where x̂
is typically a vector of input variables fed to the system, and ŷ the desired output of the sys-
tem: it can be a continuous value or a class if the goal is to classify the inputs. In the context
of robotics, classification in order to produce decisions when confronted with new, unknown
inputs is a challenging problem. There are several pieces of evidence that supervised learning
exists in the brain, where reward signals may take the form of neurotransmitter or neuromodu-
lator release. Each time a positive action is produced by the organism, neurotransmitters may
validate or consolidate the synapses that lead to particular behaviours useful for the organism.
Direct and indirect pieces of evidence are numerous to show how for example noradrenaline,
dopamine and acetylcholine can influence the behaviour and therefore be a key factor in mem-
ory retention (Kasamatsu and Pettigrew, 1976, Romo and Schultz, 1990, Zhang et al., 2009).
It has also been suggested that reward signals originating from the postsynaptic cell could
back-propagate along the presynaptic axons and consolidate synaptic changes (Harris, 2008),
providing a substrate for reinforcement of synaptic weights according to some feedback error
signal. We will come to these points later.

Rate-based approaches In artificial neuronal networks, supervised learning can be
achieved with widely used algorithms such as Kohonen learning rules, back-propagation al-
gorithms or other learning procedures. Pioneering work was performed with the Perceptron
by Rosenblatt (1958), which can be seen as the simplest kind of feed-forward neural network.
The Perceptron is a linear classifier, biologically inspired with what can be seen as rate-based
neurons and a neuronal structure. Nevertheless, despite being attractive, it suffered from se-
vere limitations (unable to learn an XOR function), and more than 10 years were needed to
find that several layers of such networks could do the job. Those frameworks are usually not
applied to spiking neurons, because ongoing activity may disrupt the learning process and
because the learning rules governing evolution of the synaptic weights would be too sensitive
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to spike interactions. Instantaneous firing rates are more robust and rate-based models, neural
mass or mean fields are more suited to implement, in a clear and theoretically tractable man-
ner, analysis of convergence, stability, and so on. The key point of supervised learning is that
a teacher is required to instruct the system what to do, so a training phase is always necessary
to teach the correct actions and/or classifications to the system. Once examples have been
learned, new stimuli can be presented.

Spike-based approaches The Liquid State Machine (LSM), explained in Maass et al.
(2002) (or similarly the echo state network (Jaeger and Haas, 2004)) is a direct application
of the learning possibilities given by chaotic neuronal networks made with spiking neurons.
If you consider a random network of spiking neurons, it will spontaneously generate a very
complex and unpredictable activity (chaotic): this is a complex dynamical system wandering
on a high-dimensional attractor (see Part II). By correctly adjusting the weights of an “output”
neuron (a reader), you can distinguish almost any particular pattern in the diversity produced
by this reservoir. Appropriate linear combination of the non-linear interactions occurring
within the reservoir can lead to a universal function approximator, close to support vector
machines. Recent work on artificial intelligence and learning provide an extension of this
LSM framework. On-line rules, based on averaged activities, can be used to learn any kind
of pattern and to teach transformations to a neuronal network (Sussillo and Abbott, 2009).
Other supervised paradigms are made with spiking neurons: recently, interesting techniques
using spiking neurons have been developed, such as the tempotron (Gütig and Sompolinsky,
2006). Conceived as a temporal extension of the perceptron, it uses the integrative properties
of the neuron to classify temporal patterns of spikes in a robust manner. The learning rule is
supervised, and synaptic modification are made according to a home-made gradient descent.
Last, by mimicking actions of neurotransmitters, such as dopamine, shown to have an effect
in vivo on plasticity, one can validate synaptic changes at the synapses, and therefore create
a learning window during which precise spike interactions will have an impact on the weight
(Izhikevich, 2007, Legenstein et al., 2008, Baras and Meir, 2007).

13.2 Unsupervised learning

Unsupervised learning is the ability of the brain, to self-organize its connections within net-
works without any teacher or reward signal. This is the kind of learning which is thought
to occur in all the primary sensory areas. In the visual cortex, for example, neurons are or-
ganized in functional maps of orientation preference, direction preference, ocular dominance
and so on. No feedback signal is present to tell the brain what should be learned in the in-
put signals. This spontaneous organization occurs even before any visual experience (Sur
et al., 1999, Crair et al., 1998, Desai et al., 2002), and therefore the neurons spontaneously
organize themselves into an efficient basis in which inputs can be easily decomposed and
processed. Because of the presence of ongoing patterns of activity at a prenatal stage, nu-
merous work in the vertebrate brain has shown that the travelling waves due “dark discharge”
in the retina are sufficient to influence laminar segregation and ON & OFF specialization in
the thalamus (Frégnac and Imbert, 1984, Shatz, 1996). The orientation columns in V1 are
considered as crucial to allow fast and robust image segmentation, binding, and so on. This
plasticity is mainly activity-driven: close-by neurons tend to receive correlated inputs, due to
the retinotopic organization, and therefore a particular mechanism should consolidate the fact
that receiving correlated activity implies a similar coding scheme, or common inputs. For a
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good review of such activity-dependent changes, see Abbott and Nelson (2000). The basic
principles underlying unsupervised learning theories are described in the following:

The Hebbian rule Most of the work on unsupervised learning in the brain has been based,
since more than fifty years, on a well-known postulate made by Hebb (1949):

When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.

Here can be found the basis of causal associations in the unsupervised learning framework.
This postulate is a local and associative rule, meaning that causal activities between two
connected neurons should lead to a synaptic reinforcement between them. Neurons do not
need to integrate activity from other neurons: the evolution of the synapses between them
results only from their own activities (“homosynaptic” plasticity, according to the terminology
of Eccles). If 〈xi〉 and 〈x j〉 are the averaged firing rates of two neurons i and j, then if wi j is a
synapse between i and j, we have according to Hebb’s postulate:

dwi j

dt
= F(wi j,〈xi〉,〈x j〉) (16)

with F being an unknown function. The rule is cooperative, the postulate stating that both pre-
and post-synaptic neurons have to be active together in order to trigger synaptic modifications.
Therefore, in the simplest form, the rule is used as:

dwi j

dt
= η〈xi〉〈x j〉 (17)

where η is a constant to scale the evolution of the weights. From a biological point of view,
since synapses are well isolated and protected by glia cells, the synaptic clefts are rather
isolated areas. Therefore, if we ignore the possible role of glia cells in memory consolidation,
this Hebbian hypothesis that synaptic efficiency can be regulated only by pre-post electrical
activity is tempting. More details about how exactly those changes in the synaptic weight
may happen will be given in Part V. Nevertheless, biological evidence also suggest that
synaptic modification may not only depend on the firing rates of the neurons. This framework
of Hebbian learning has been very successful in reproducing the development of functional
maps in V1, with firing rate models (Bednar et al., 2004). A network of mean-field models of
excitatory and inhibitory populations will develop, according to Hebbian rules, and structure
itself according to its inputs in such a way that can be closely compared to the architecture
of the primary visual cortex. Nevertheless, some features of this Hebbian process are not
biological and the rule, in its basic definition (see eq 17), is unstable. First, a normalization
procedure is always assumed to keep weights in a certain range and avoid instability problems.
This normalization procedure is far from being biologically explained. Then, as we will see
later, weights can only be increased in this framework, leading to huge instabilities.

The Hopfield network One of the most famous examples of unsupervised learning in net-
works is made with binary neurons forming an associative memory and relies on this Hebbian
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learning rule. This is the so called Hopfield model (Hopfield, 1982). Its simplicity and its
efficiency has made it widely popular, and it has been used for a lot of learning problems, like
pattern recognition or classification. The network is composed of N units xi, each of them
being connected to all the others with weights Ji j governed by equations:

xi(t +1) = sgn(∑
j

Ji jx j(t)−θi) (18)

θi is a threshold to determine the spin of the unit xi: -1 or 1. The model is able to learn some
repeatedly imposed patterns through a Hebbian algorithm, which will update the synaptic
weight Ji j by adding ∆Ji j, which will be proportional to the averaged correlation between the
two activities:

∆Ji j ' 〈xi〉〈x j〉 (19)

The convergence to imposed patterns will depend on their number, and their relative orthog-
onality (Hopfield, 1982). Theoretical studies have been performed on the ratio of number of
patterns that can be stored in the network to the number of neurons (Amit et al., 1985), and
the ratio is rather low, around 0.15.

The Boltzmann machine We introduce another learning model, very similar to the Hopfield
network, which will be referred to in our following work. Roughly speaking, the Boltzmann
machine is a stochastic version of the Hopfield network. If we keep the same notation as for
the Hopfield network, we have a global energy value E, defined by the following equation:

E =− ∑
1≤i, j≤N

Ji jxix j +∑
i

θixi (20)

Switching the spin of the unit i from -1 to 1 results in an energy difference of:

∆Ei = ∑
j

Ji jx j−θi (21)

In the Boltzmann machine, transitions of the units are stochastic. The probability of the unit i
being in state 1 is:

pi =
1

1+ exp(−β∆Ei)
(22)

This model can be used to find the global minimum of an energy function, by slowly decreas-
ing the “temperature” T = 1/β while always leaving network time to reach thermal equilib-
rium (Ackley et al., 1985). For learning, the Boltzmann machine is separated into two layers,
a visible layer, and a hidden layer. An input from the environment corresponds to fixing the
visible layer units to the values of the input. This is the “clamped” phase. Alternatively, the
network can run freely. The Boltzmann machine is able to learn and internally represent a
given distribution of inputs by the following algorithm (Ackley et al., 1985):
– The visible layer is clamped to some inputs sampled from the distribution which has to be

learned, and the network runs until it reaches a thermal equilibrium. The probability of
synchronous activation pi j of the units i and j is estimated.

– The network runs freely. The probability of synchronous activation p′i j of the units i and j
is estimated.

– The weights are updated according to the rule: ∆Ji j = ε(pi j− p′i j).
– Repeat these 3 steps until the weights converge to a steady state
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The strength of the Boltzmann machine is that this algorithm is proven to work for any input
distribution. The Kullback-Leilber distance between the environment-constrained distribution
and the free-running distribution of visible units is denoted G, and by definition:

G = ∑
α

Pα ln(
Pα

P′α
) (23)

where Pα is the probability of the state α of the visible units when constrained by the environ-
ment, and P′α the probability during free-running. The nice property of Boltzmann machine is
that:

dG
dJi j

=−β(pi j− p′i j) (24)

The gradient thus depends only on local variables, and the preceding algorithm is thus a simple
gradient descent. In the case where there are only visible units, the function G is convex, and
the algorithm is thus guaranteed to converge to a local minimum.
The Boltzmann machine has been sometimes considered as a general learning machine. In
practice, several problems arise when increasing the number of units. Notably, the learning
time increases exponentially with the size of the machine, making it intractable for real-size
problems.

14 Hebbian rules and spike based plasticity

14.1 Refinement of the Hebbian rule

The covariance rule In the very naive form, given Eq. 17, the Hebb rule does not really
account for depression, i.e. for the fact that a synapse can also be weakened. Hebb’s postulate
has been extended by Stent (1973), taking into account the fact that synapses could also be
depressed:

When the pre-synaptic axon of cell A repeatedly and persistently fails to excite the post-
synaptic cell B while cell B is firing under the influence of other pre-synaptic axons, metabolic
change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is
decreased.

We also can then talk of a covariance rule (Stanton and Sejnowski, 1989). When activities
covary, the synaptic link between them should be enforced or weakened. A detailed analysis
of all these rules can be found in Gerstner and Kistler (2002). The covariance rule takes into
account the averaged activity 〈xi/ j〉T over a long time window T , and leads to the following
equation:

dwi j

dt
= η〈xi−〈xi〉T 〉〈x j−〈x j〉T 〉 (25)

η is again a scaling constant, and 〈〉 is the instantaneous firing rate. An illustration of the
synaptic modification expected by the different plasticity scheme can be found in Figure 21. In
vivo, these covariances rules have been explored by Frégnac et al. (1988, 1992, 1994), Stanton
and Sejnowski (1989), Debanne et al. (1995, 1998). The fact that the rule varies according
to 〈xi/ j〉T implies that it depends on the past activities of the pre- and post-synaptic neurons,
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averaged over a certain time window T . This phenomenon is a form of metaplasticity: the
plasticity rule itself is plastic, and this will be the subject of Part V.

Depression

dwij
dt

Potentiation

Depression

dwij
dt

Potentiation
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dt

Potentiation

Depression

dwij
dt

Potentiation

θdep θpot
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θpot

Hebb Covariance and BCM

ABS In vivo

Figure 21: Illustration of different schemes of plasticity: the Hebbian rule, the covariance rule,
the the BCM rule (black dash line), the ABS rule, and some in vivo observations. For a fixed
pre-synaptic firing rate, the graphs show modification of the synaptic weights as a function of
the post-synaptic firing rate, for Poisson firing statistics. Adapted from Frégnac et al. (2010).

The BCM rule In order to extend the covariance rule and approach the problem of weight
normalization, Bienenstock et al. (1982) designed a model of synaptic plasticity that was able
to reproduce phenomenologically several observations made in vivo (Clothiaux et al., 1991,
Kirkwood et al., 1996). The BCM rule (BCM stands for Bienenstock, Cooper, and Munro),
is a physical theory of learning in the visual cortex. The formalism was an efficient way to
balance and regulate by a heterosynaptic process, the amount of plasticity according to past
activity. It is close to the covariance rule, with a sliding threshold mechanism that regulates
the amount of plasticity, according to the past activity of the synapse. Under the BCM rule,
we have, if 〈xi〉 is the firing rate of the pre-synaptic neuron and 〈x j〉 is that of the post-synaptic
one:

〈dwi j

dt
〉= 〈xi〉Ψ(〈x j〉,θ(〈x j〉)) (26)

with Ψ(〈x j〉< θ,θ)< 0 and Ψ(〈x j〉> θ,θ)> 0. θ is a sliding threshold and depends on 〈x j〉.
The relationship between θ and 〈xi〉 should be supralinear: quadratic or more.

The ABS rule The ABS rule (Artola, Brocher and Singer) (Artola et al., 1990), linked
with calcium-based models of plasticity (Lisman, 1989), adds one other sliding threshold for
depression. Not only potentiation but also depression depends on the past activity. As one can
see in Figure 21, no modification of the synapses occur if the post-synaptic activity is below a
certain threshold θdep. If crossed, then depression takes places, before an other threshold θpot
is crossed, triggering potentiation. The direction of the synaptic gain change depends on the
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membrane potential of the post-synaptic cell, or on the amplitude of the surge of Ca2+. The
exact details of the machinery underlying these changes, from a biological point of view, will
be discussed more in depth in Part V.

14.2 Spike based plasticity and spike timing dependent plasticity

Theta burst stimulation Bliss and Lomo (1973) discovered long-term potentiation (a long-
lasting form of synaptic plasticity) in the hippocampus by high-frequency stimulation (HFS)
of pre-synaptic afferents. Strong burst of pre-synaptic activity affected the amplitude of the
synaptic EPSP in a stable manner, with changes lasting for more hours or more. This pioneer-
ing work showed how activity could shape synaptic efficacy.

Spike timing dependent plasticity The best experimental setup for exploring plasticity in
a controlled manner is the in vitro setup. By using pairs of neurons clearly isolated and
connected (using either brain slices or cultured neurons), one can patch the pre- and the post-
synaptic neuron and observe the synaptic modifications between them according to their dis-
charge. Based on those controlled experiments, the most recent and promising candidate to
support unsupervised learning algorithms in the brain, based on neuronal activity, is the spike
timing dependent plasticity (STDP).

There is indeed several evidence (Bi and Poo, 1998, Markram and Tsodyks, 1996, Gerstner
et al., 1996) in neocortex that the efficiency of a synaptic connection between two neurons may
be regulated by the precise timing of the joint activity of the neurons. This postulate, originally
made by Hebb (1949), has been demonstrated in a lot of in vitro experimental studies in the
form of the STDP rule. This is an associative rule that needs to be distinguished from short
term plasticity or homeostasis phenomena, involving only integration of pre-synaptic activity
(Tsodyks et al., 2000, Turrigiano and Nelson, 2004). As one can see in Figure 22, taken from
Dan and Poo (2004), when pre-post pairings are made repeatedly at a fixed frequency of 1 Hz,
with a particular time difference δt between pre and post spikes, synaptic modifications are
observed whose magnitude depends on δt. For positive values of δt, when pre-synaptic spike
occurs before the post, the synapse is potentiated. Oppositely, if δt is negative, the synapse is
depressed. Both mechanisms occur in relatively short time windows of' 20 ms, and a double
exponential fit made on the data is the classical shape everybody has in mind when talking
about STDP. That 20 ms time scale is the time window for triggering a change, but the actual
change happens much more slowly. While some recent evidence may suggests that STDP can
also be found in vivo (Crochet et al., 2006, Zhang et al., 1998, Young et al., 2007, Jacob et al.,
2007), the impact of such a rule on a network level is still misunderstood, and part of the
problem comes from the fact that there is a lack of data on the properties and the relevance of
STDP in vivo. For review, see Caporale and Dan (2008). The STDP phenomenon as seen in
vitro is appealing from a theoretical point of view. If a pre-synaptic spike occurs just before a
post-synaptic one, the strength of the synapse between the two neurons tends to be increased.
Conversely, if the pre-synaptic spike comes just after a post-synaptic one, the synaptic strength
tends to be decreased. This rule establishes a link with Hebb’s postulate and could allow
neurons to learn causal chains of information: if pre-synaptic information is important in the
discharge of the post-synaptic neuron, then synapse is strengthened, otherwise it is weakened.
Interestingly, rules symmetric in sign have been observed in the electro senseory lobe of the
electric fish by Bell et al. (1997) and have been used in models to decorrelate the sensory
stream from expected inputs linked with the motor-induced reaffernce.
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Figure 22: Illustration of spike timing dependent plasticity time windows, taken from Bi and
Poo (1998). Depending on the precise time difference δt between a post- and a pre-synaptic
spike, the synaptic weight can be either depressed or potentiated.

Since this seminal work, several theories have been proposed for a conceptual explanation
of these STDP curves. The promising link between STDP and the Hebbian rule has led sev-
eral authors to try to find a more generic optimization principle behind this canonical shape.
The quest is “can STDP be seen as a biological response to an optimization problem?” with
a goal function like Φ(xinput,youtput), if xinput are the inputs to the neuron, and youtput its re-
sponses. Are the shapes of those curves telling us something about the learning strategies
performed by the neuron? According to Toyoizumi et al. (2007), Chechik (2003), STDP
could be seen as an attempt, by the neurons, to maximize the transmission of information and
therefore the mutual information between inputs and outputs, MI(youtput,xinput). For Bohte
and Mozer (2005), STDP is more a way to reduce the variability of the output knowing the
input: H(youtput/xinput) (with H being the entropy). We can cite other examples such as slow
feature analysis (Sprekeler et al., 2006), where STDP aims to decompose the signals into a
basis of signals, slowly varying in time, or the predictive coding (Rao and Sejnowski, 2001)
theory, where STDP is used to encode only time differences. Nevertheless, as we will see
later, since STDP is still, from a biological point of view, a phenomenon which is not under-
stood, all these theories, even if conceptually promising, can not pretend to understand STDP
in its globality.

14.3 Classical model of STDP

From a modeller’s point of view, the rule is ill defined. A good review on all the impor-
tant aspects of such modelling is given in Morrison et al. (2008). In its most widely used
formulation, one can model STDP with the following system of equations:

δw = λ





apotwµpote
− δt

τpot if δt = tpost− tpre > 0

adepwµdepe
− δt

τdep if δt = tpost− tpre < 0
(27)

λ is the learning rate, apot and adep the scaling increments of the synaptic weights performed
at each pairing, for potentiation and depression. Each time a pre or a post-synaptic event
appears, weights are updated accordingly. τpot and τdep are the time constants of the double
exponential shape observed in biological data, such as the one that can be seen in Figure 22.
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Typical values are in the range 10-30 ms. µpot and µdep are generic exponents to model the fact
that weight increments can depend on the current values of the weights. Taking advantage of
the exponential, the most efficient way to implement this systems, at the synapse level, is to
define two local variables θpot(t) and θdep(t), such that:

dθpot(t)
dt =−θpot(t)

τpot
dθdep(t)

dt =−θdep(t)
τdep

(28)

Each time a pre-synaptic spike occurs, θpot → θpot + 1, and each time a post synaptic spike
occurs, θdep→ θdep +1. In this case, if θpot and θdep are not bounded, the integration scheme
of the STDP is said to be all-to-all. All previous pre- or post-synaptic spikes contribute to the
modification of the weight at time t, since they have an impact on θpot and θdep.

In the so-called nearest-neighbour interaction scheme, θpot and θdep are bounded by 1, and
only the nearest either pre or post synaptic spike is considered for potentiation or depression.
This difference is important, because STDP in its basic form with an all-to-all interaction
scheme is not compatible with the BCM theory, as shown in Izhikevich and Desai (2003).
Only the nearest-neighbour scheme can provide a BCM behaviour with the rule. The values
of λ, apot, adep, µpot, µdep, τpot and τdep are selected according to the STDP desired rule. To
simplify the following notations, we set adep = λapot (and thus we should have λ < 0, because
depression decreases the weight). The pairing scheme used during all the the simulations is
all-to-all, meaning that all the interactions between pre and post synaptic spikes are taken into
account.

Weight-dependent model of STDP Regarding the weight modifications performed by such
plasticity rules, there are two main classes of STDP rules that are commonly used in mod-
elling studies of neuronal networks. They are categorized as either “additive” or “weight-
dependent”, depending on how current synaptic weight impacts the change in the weight of
the synapse (Gütig et al., 2003). These classes are established with the exponents µpot and
µdep. If both are set to 0, then the STDP is “additive”. Each time a weight modification is
made, increments are only determined by apot and adep, without taking into account the cur-
rent weight of the synapse. The rule needs a hard bound thresholding to constrain the weights
between [wmin,wmax]. Oppositely, in the weight-dependent rule, the weight increments are a
function of the current weight of the synapse. This is the case if µpot and µdep are positive.
The biological evidence for “additive”-only rules is quite thin. The original data for STDP,
and especially the synaptic modification observed as a function of the initial amplitude of the
EPSP show (Figure 23) that the relative changes are not similar for potentiation and depres-
sion. Modifications for potentiation seem to be independent of the initial amplitude of the
EPSP, while this is not the case for depression. Bi and Poo (1998) proposed, initially, a log-
linear relationship for depression, while potentiation is much more additive. For a precise fit,
see Morrison et al. (2008), Standage et al. (2007), but the exact values for µpot and µdep are
not crucial, as long as they are not zero.

As pointed out in Gütig et al. (2003), the additive case, often used in models, is a very partic-
ular case with particular dynamics. It has been shown in van Rossum et al. (2000), Billings
and van Rossum (2009), through a Fokker Plank approach, that an additive STDP rule always
drive the weight distribution to a bimodal one, with all weights being clipped either at wmin
or at wmax. Nevertheless, they encourage synaptic competition and allow a better storage of
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Figure 23: Relative weight modifications for potentiation (positive spiking) and depression
(negative spiking), according to the initial amplitude of the EPSP. Taken from Bi and Poo
(1998).

patterns (Fusi and Abbott, 2007). As we will see in the following, they are less sensitive to
the memory retention problem occurring in recurrent networks. Moreover, it is also known
that in cortex, and also in the cerebellum a lot of the synapses are considered as almost silent.
One could see here the evidence for bimodal distribution resulting from the additive rules. On
the contrary, weight-dependent rule leads to a unimodal distribution of the weights, more bi-
ologically plausible, but does not allow the emergence and the survival of neuronal structures
in balanced random networks (Billings and van Rossum, 2009, Morrison et al., 2007a).

Plasticity of the inhibitory synapses Although inhibitory interneurons modulate many
neuronal processes, the evidence for plasticity at inhibitory synapses remains scarce. Some
studies report strengthening of inhibitory synapses in negative rate covariance regimes (Ko-
matsu and Iwakiri, 1993), and spike timing dependent plasticity of inhibitory synapses has
also been reported (Haas et al., 2006) as well as spike timing dependent depression of excita-
tory synapses on fast spiking inhibitory interneurons. Almost all models of plastic networks
consider that only excitatory synapses are plastic, because most of the biological evidence for
STDP has been gathered for synapse between excitatory neurons, far more numerous and easy
to patch than inhibitory ones. Nevertheless, the question of plasticity at inhibitory synapses
remains open, and could greatly help stabilization in recurrent networks. Haas et al. (2006)
found an anti-Hebbian rule for inhibitory synapses. Pre-post pairing led to reinforcement
of the synapse, meaning to an increase in the amplitude of the post-synaptic inhibitory post
synaptic potential (IPSP), while post-pre led to a decrease. This anti-Hebbian rule, from a con-
ceptual point of view, offers nice theoretical possibilities. In artificial neural networks, anti-
Hebbian rules for inhibition are important to balance the changes at the excitatory synapses
and allow the network to perform robust principal or independent component analysis (Plumb-
ley, 1993). In all the following, we decided to have only plastic excitatory synapses, to be in
line with previous literature and also to have a clear insight into the effects induced by plas-
ticity.
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15 A memory retention problem

To determine if external statistics learned through STDP can reverberate in the ongoing ac-
tivity of a recurrent network, we create a large recurrent network with plastic synapses. After
having converged to an equilibrium, the idea is to see if external inputs can establish a long
lasting trace in the spontaneous activity, after stimulation. Such reverberations have been ob-
served in vivo, with voltage sensitive dye imaging by Han et al. (2008). In this paper, the
authors showed that the presentation of a visual stimulus in the rat barrel cortex elicits an
evoked response in the form of a travelling waves that pop up and propagates in the visual
cortex V1, and that this evoked response tends to be spontaneously replayed in the ongoing
activity during several minutes after the and of the stimulation. When recording the ongoing
activity in the visual cortex minutes after the stimulation, they were still able to see some kind
of reverberation of the input. Such replay of particular patterns in ongoing activity is also tack-
led in a lot of other studies, such as Ikegaya et al. (2004) and Mokeichev et al. (2007). This
replay would establish a link with the theoretical work performed with the Frozen Paradigm
(see Part II): since the ongoing activity has a particular impact when used as an external
stimulation, it would be interesting to see how its statistics, constrained by the wiring of the
network, can be shaped by synaptic plasticity.

To address this question, we begin by studying the STDP rule equilibrium in a topographical
network, similar to the one previously explored in Part III. Since we use weight-dependent
rules, as in Morrison et al. (2007a), we already know that stable connections do not developed
in random network. In this work, the authors showed that ongoing activity in random balanced
networks was disrupting the formation of a stable connectivity, and demonstrated in large-
scale recurrent networks the memory retention problem of weight-dependent STDP rules. The
Frozen Paradigm requires an efficient way to shape, in a stable manner, the statistics of the
ongoing activity. Stimulus statistics, as in the Han et al. (2008) VSD study, should be captured
and integrated into the attractor of the ongoing activity, in order to enhance the reliability of
the triggered responses. Since we know these statistics are driven by the connectivity, we
need an efficient way to store it, in an unsupervised manner, into the synaptics weights of the
network. The idea of this Part is to see whether the connectivity structure can promote or
inhibit the development of such stable weights structures, and how stimulations could affect
the equilibrium of a plastic reccurent nework.

15.1 Materials and Methods

Neuron model Neurons are modelled as leaky integrate-and-fire neurons with alpha-
function shaped current-based synapses. The detail of their parameters is given in Table 2.

τm τref τexc τinh Vleak Vth Vreset cm
20 ms 2 ms 0.33 ms 0.33 ms 0 mV 20 mV 0 mV 250 pF

Table 2: The cells parameters used in all the simulations. The cell model is a classical Integrate
and Fire neuron with an alpha-shaped decay for its current-based synapses.

Network Structure We consider a topographically organized balanced network of N2 neu-
rons, arranged on a 2D grid as in Mehring et al. (2003), with a classical ratio of 4:1 between
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the number of excitatory and inhibitory neurons: N2
inh =

N2
exc
4

A layered organization These excitatory and inhibitory neurons are placed on two grids
of sizes Nexc ×Nexc and Ninh ×Ninh respectively, both corresponding to a cortical area of
size α×α mm2. In the following, we consider this area as a toroidal surface with periodic
boundary conditions to avoid any border effects and grid artefacts will be neglected.

Probabilities of connections The probability pi j of connection between two cells i and
j is drawn from a random distribution dependent on the distance li j between the two cells,
expressed in mm. More precisely, we have

pi j = p0e−
l2i j

2σ2 (29)

where p0 is the amplitude of this Gaussian shaped curve, and not the probability for a neuron
to be connected with himself: autapses (a neuron connecting to itself) are not allowed in
the network for stability reasons. The values of p0 and σ are extracted from fitting such
a Gaussian curve to the data of Hellwig (2000) concerning the observed connections within
layer III, which gives p0 = 0.7 and σ= 0.175 mm (ensuring a connectivity of approximatively
13% in a square millimetre). Figure 24 summarizes the general layout of the network and the
wiring scheme.
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Figure 24: Connectivity of the topographical network. Left: cells are arranged on 2D grids
with distinct spacing for excitatory (blue) and inhibitory (red) cells. Right: Each cell is con-
nected to its local neighbourhood according to a Gaussian probability profile.

Linear delays Similarly to the model previously described in Part III, we used linear delays:

di j = dsyn +
d
v

(30)

where dsyn is the synaptic transmission delay, set to 0.1 ms, d the Euclidean distance, on the
torus, between neurons i and j, and v the axonal velocity. In all simulations, v = 0.3 m.s−1

(value taken from (Bringuier et al., 1999, Benucci et al., 2007)).
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Control Network To check what are the effects due in particular to the topographical struc-
ture, we designed a control network with the same numbers of cells, the same averaged con-
nectivity (in term of probability of connections) and delay distribution, but without any topo-
graphical organization. This shuffled version of the 2D network is a pure sparsely connected
random network.

Simulation software For all the simulations, we used a parallel implementation of the
NEST software (Gewaltig and Diesmann, 2007), with a time step of dt = 0.1 ms

Measures The fano factor (FF), like the coefficient of variation (CV), is a measure of the
dispersion of a probability distribution. The fano factor is defined as: FF = var(X)

〈X〉 where var
is the variance and 〈〉 the mean of a random process X in some time window T . In our case,
the fano factor is computed on the average spike count over a population of 1000 randomly
sampled neurons within the network, binned with T = 3 ms.

Cross-correlations within the network are computed by averaging correlation coefficients over
N pairs of cells. For such pairs, if x and y are the time series of the spiking activity histograms,
binned with a time bin T , we have:

r =
∑

n
i=1(xi−〈x〉)(yi−〈y〉)
(n−1)std(x)std(y)

(31)

where 〈x〉 and 〈y〉 are the mean of the time series and std(x) and std(y) their standard devia-
tions.

Equilibrium reached with STDP In the case of a neuron receiving uncorrelated Poisson
spike trains, the equilibrium weight w∗ achieved by STDP can be calculated analytically ei-
ther in a nearest neighbour interaction scheme or in an all-to-all scheme (Standage et al.,
2007). In the case of a multiplicative rule such as ours, and an all-to-all scheme, with

δw = λapotwµpote
− δt

τpot for potentiation, and δw = λadepwµdepe
− δt

τdep for depression we have,
where r is the firing rate of the post-synaptic neuron :

w∗ =−(1
λ

τpot + r
τdep + r

)
1

µdep−µpot (32)

So, knowing the stationary firing rate r of the static recurrent network, without plasticity, if
we want to have an equilibrium at w∗, then we have to fix:

λ =− 1
w∗(µdep−µpot)

τpot + r
τdep + r

(33)

15.2 Results on the dynamics

All the following results are obtained in a 12500 neuron network (10000 excitatory cells, 2500
inhibitory cells), simulating a diluted cortical area of 1 mm2. We summarize here briefly the
parameters used to obtain these first results. We use p0 = 0.7,σ = 0.175, the same parameters
for the leaky integrate and fire neurons with alpha-function shaped current-based synapses as
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in Morrison et al. (2007a), except that we add a refractory period of τref = 2ms. Each neuron
receives 1600 external Poisson inputs at excitatory synapses, each at a frequency vext = 6 Hz.
We use the rule described in van Rossum et al. (2000) for STDP at the excitatory synapses,
with τpot = 14 ms, τdep = 34 ms, and λ is set in order to have an equilibrium at 100 pA. The
parameters are summarized in Table 3.

λ τpot τdep µpot µdep
see Eq 33 14 ms 34 ms 0 1

Table 3: Spike timing dependent plasticity parameters. We used the rule proposed in van
Rossum et al. (2000) with additive potentation and multiplicative depression. λ is defined
according to the weight w∗ we want to reach, and the time constant of the depression window
is higher than the one for excitation.

15.2.1 Static properties of the network

Description of the Asynchronous Irregular regime The weights were initially set to
put the network into an Asynchronous Irregular (AI) regime (see Brunel (2000)). We use
wexc = 100 pA and winh = −gwexc with g = 6. This AI state can be described as follows: in
the static case, the network has an average firing rate of 10.2 Hz and a mean coefficient of
variation of the inter-spike interval of 0.88. The targeted weights w∗ is therefore only a rough
approximation since these numbers shows us that the behaviour of the network can not be
reduced to a pure Poisson process. The fano factor, computed with a bin size of 3 ms, is 5.85
(see Figure 25)
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Figure 25: Firing rate of the network averaged over 1000 neurons for 50 s with a bin size of
100 ms. The inset shows the distribution of the firing rates for those recorded neurons. The
heterogeneity of the number of synapses per neuron is responsible for the Poisson distribution
(El Boustani and Destexhe, 2009b)

It is important to notice that, as can be seen in the inset of Figure 25, the heterogeneity in the
mean number of efferens synapses per neuron introduces a variability in the firing rates. For
a network where all neurons establish a fixed number of connections (Mehring et al., 2003),
the distribution of the firing rate is much more closer to a Gaussian curve and the network
suffers from a lack of heterogeneity. We check with the control network that these properties
are generic and not due to the structure. In a randomly connected network with the same
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macroscopic properties, we can observe similar values for the first-order statistics: the firing
rate settles down at 11.2 Hz, and the ISI CV is 0.9.

Cross correlations within the Network The differences between the topographical and the
randomly connected control network appear in the structure of the cross correlations. As one
may expect, they depend on the distances in the former network, and not in the latter, similar
to results shown in Part III. We computed the Pearson coefficient for the cross correlations
between pairs of cells sorted according to the distances between them (see Figure 26, left).
There is a strong dependence in the topographical network which is not present in the random
one, and correlations roughly follow an exponential decay. The influence of the transmission
velocity on this decay can be observed for several values of v. As a comparison, we plot the
Pearson correlation coefficient in the random network.

Without taking the positions into account, we computed the cross correlogram of the activities
between the excitatory cells. In the following, all the cross-correlogram are averaged over 500
pairs of neurons and 50 s of simulation using a bin size of 0.1 ms. Figure 26 (Right) shows
that the cross-correlogram of the overall activity is symmetric, with fast oscillations, reflecting
the balanced state of the network. Oscillations do not spread into the temporal domain.
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Figure 26: Cross correlations in the static network. Left: the Pearson correlation coefficient
averaged over 500 pairs of neurons recorded for 50 s, and whose activities have been gathered
with a bin size of 0.1 ms. In shaded gray, the Gaussian profile of the connections. Right: The
averaged time course of all the pairwise cross-correlations.

For small distances (between 0 and 0.1 mm), we have a strong cross-correlation. For two
populations separated by 0.3-0.4 mm, the peak of the correlation tends to decrease, and for
two populations far apart, separated by 0.6-0.7 mm (0.7 mm being the maximal distance on the
toroidal surface), we have only a small residual cross-correlation, implying that the major part
is due to local activity. Those data, even if obtained in a slightly different network compared
to the one simulated in Part III, and especially in a different regime (AI vs SI), are in line with
previous results.

15.2.2 Convergence and weights Distribution

We next turned on STDP at all the excitatory synapses, and recorded the evolution of the
efferent weights of 1000 neurons, simulating 250 s of biological time for the network. As
we could predict, the weights for the excitatory to excitatory and excitatory to inhibitory
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connections settled down into two Gaussian distributions (called respectively N (µEE ,σEE)
and N (µEI,σEI)) with means close to the targeted equilibrium w∗: µEE = 106.3 pA and
µEI = 107.2 pA ( σEE = 25.6 pA and σEI = 26 pA). The statistics of the network are roughly
invariant, with a global firing rate during the last 50 s, averaged over 1000 neurons, of 11 Hz.
The mean CV of the inter-spike interval is 0.86 and the fano factor 6.15.
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Figure 27: Convergence of the mean excitatory-excitatory weight in a plastic network. The
error bars show the standard deviation of the distribution, and the inset represents the final
distribution of the weights, after convergence has been reached.

As shown in Figure 27, the convergence to the distribution of weights N (µEE ,σEE) is rapid,
with a variance and a mean that is almost constant over time. Looking closer at the mean
weight averaged according to the delays between two cells in Figure 30, we can observe a
clear dependence of these delays, and therefore of the distance, on the mean weight.

Control Network We implemented the same STDP rule in the control network, without
structure, and compared the results obtained after 250 s of biological time for the system.
The control network settled down into a regime close to that of the structured network: mean
firing rate of 10.5 Hz, mean ISI CV of 0.82 and fano factor of 7.93. By looking more closely
at the convergence of the weights in this control network, we can notice than the convergence
is similar, with a convergence to the distributions N (µEE = 103.8 pA,σEE = 24.7 pA) and
N (µEI = 104 pA,σEI = 24.8 pA) , but we can also notice that the weights do not depend on
the delays. The balanced activity is kept, but we lose the topographical structure that could be
seen via this influence of distance on the weights. Nevertheless, the macroscopic quantities
such as firing rates, average level of correlations, ISI CV are identical in both networks, in
line with the idea that some macroscopic invariants may constrain the dynamical properties,
as shown in Part III.

15.2.3 Differences between excitatory and inhibitory synapses

In all the results, a slight difference between excitatory to excitatory (EE) and excitatory
to inhibitory (EI) synapses is observed. To test the idea that the grid could be responsible
for these differences, we plotted in Figure 28 how the way the delay are truncated due to
the discretization of the grid introduces a small bias between the two distributions. More
precisely, the inhibitory to inhibitory (II) and inhibitory to excitatory (IE) connections have
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slightly different distance distribution from the EI, and EE connections, due to the different
cell densities on the grid, and the network is not fully homogeneous. The inhibitory grid being
less dense than the excitatory one, the discretization impacts the total number of inhibitory
synapses. This bias is responsible for the slight difference between EI and EE synapses.
Nevertheless, this difference does not drastically affect the results. For an in-depth study of the
artefacts that may be induced by grid structure, see Voges et al. (2007). Additional simulations
were made, drawing cells with random positions in a square of 1 mm2 and without the grid,
both with this network or the one previously built in Part III, and this difference vanish (data
not shown).

Figure 28: Distribution of the distances, and hence delays, observed in the topographical
network, for all types of connections after the grid discretization.

15.3 Results on axonal versus dendritic delays

Next, we modified the delays between the cells to take into account more precisely the
axonal and the dendritic parts of the delays, to be closer to biology. The interval in the
STDP rule, δt = tpost− tpre, may be more precisely written, from a synaptic point of view,
as δt = (tpost+ tback

den )− (tpre+ taxon+ tsyn), where tback
den represents the time for an action poten-

tial that was elicited at time tpost at the soma of the post synaptic neuron to back-propagate
within the dendrite to the synapse, taxon the time for a pre-synaptic spike emitted at time tpre
to be propagated along the axon to the synapse due to the axonal velocity, and tsyn the time
needed by the synapse for neurotransmitter release and diffusion. (see Figure 29, Left).

For STDP, back propagating action potentials are the best candidates for informing the
synapse that a post-synaptic spike has been emitted (Kampa and Stuart, 2006, Golding et al.,
2002, Letzkus et al., 2006, Frégnac, 1999). They have been observed in vitro, and even though
their back-propagation is subject to several conditions, such as depolarization of the dendrite
and so on, they could provide a key mechanism for computing the time difference, at the
synapse level, which is needed by the STDP framework. To simplify the notation, for the sake
of clarity, we merge tsyn into taxon in order to deal only with two terms. Then, we have:

δt = tpost− tpre +(tden
back− taxon) (34)

Since the global transmission delay between the two cell somas, d, is also partly axonal and
partly dendritic, we can say that if γ is the percentage of the delay which is considered as
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being axonal, we have taxon = γd and tden = (1− γ)d. Under the assumption that the dendritic
excitatory post synaptic potential (EPSP) forward propagation time is the same as the action
potential back propagation time (tden = tback

den ), we have in the previous equation:

δt = tpost− tpre +((1− γ)d− γd)
= tpost− tpre +(1−2γ)d (35)

We can therefore see that introducing an asymmetry between tden
back and taxon will induce a

shift of the STDP rule. When two connected cells fire together tpre = tpost, the way we are
modelling the delay and the value of γ will lead either to potentiation if γ< 0.5 or to depression
if γ > 0.5 (see Figure 29, Right). Since STDP is highly sensitive to high temporal frequencies
in the spike pairings, we could hypothetize that this shift will strongly impact the convergence
of the weights. In such a topographical network, most of the correlations are localized (see
Figure 26), occurring in a rather short temporal window, so if the delay is large, the net effect
on the weights could be either a potentiation, for neurons that are close by, or a depression.
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Figure 29: Left: Schematic view of the influence of γ, the proportion of axonal delay in the
propagation delay between the pre and post synaptic neuron. Right: Influence of the axonal
and dendritic delay in the STDP curve. The variation of γ can shift the curve.

To check how this might affect the behaviour of the network, we launched three simulations:
in a first protocol, delay is as before, purely dendritic. This is the default situation with the
simulator used, NEST, since the synapses are always hosted by the pre-synaptic neurons. In
a second protocol, we split the delays between neurons into two part: 30% of the delay was
considered as being axonal, and 70% as being dendritic. We observed on the 2D network how
this repartition affected the dynamics and the steady state of the network (Currently, NEST
does not allowed to have more than half of the delay to be axonal).

The network settled in a stable state, with a mean ISI CV of 0.82, a mean firing rate of
10.9 Hz, and a fano factor of 7.52. The weights for the convergence are µEE = 104.8 pA
and µEI = 105.8 pA. Without tweaking the value of λ, the balance between depression and
potentiation, the convergence of the macroscopic quantities within the network seems to be
rather insensitive to this axonal delay. So the introduction of a partly axonal delay reduces
the asymmetry of the total dendritic delays, without altering too much the properties of the
network. Nevertheless, as we can see in Figure 30, the dependence of the weights on the
distance is drastically reduced compared to a full dendritic delay.
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Figure 30: Influence of the delay modelling. Differences in the equilibrium reached by the
plastic network according to the percentage of the delays which is considered as being axonal.

In a third simulation, we split all the delays into two equals parts, 50% is considered as being
axonal and 50% is considered as being dendritic. The final statistics of the network are again
still very similar (firing rate of 10.6 Hz, Fano Factor of 6.7, mean ISI CV of 0.81). The weights
for the convergence are µEE = 102.4 pA and µEI = 103.4 pA, and as can be seen in Figure 30,
this almost suppresses the dependence of the weights on distance. Most of the modification of
the weights is due to small differences in δt. The closer δt is to 0, the higher is the amplitude
of the modification of the weights with STDP. This shift induced by γ is therefore crucial
for promoting the development of structures according to the topology. The prediction of
these simulations is that for a simulator that implements delay as entirely axonal, with post-
synaptic neuron hosting the synapse, then results shown in Figure 30 should be inverted.
Weights for synapses connecting nearby neurons, and therefore correlated regions would be
depressed. If the delay is partly axonal and partly dendritic, then when the two neurons fire
simultaneously, we have potentiation, but we are reducing its effect by shifting the STDP
curve toward negative values.

15.4 Emergence of structures

It was previously reported, in random networks, that even if weight-dependent STDP is com-
patible with the Asynchronous Irregular regime, no stable structures were able to be main-
tained. More precisely, Morrison et al. (2007a) have shown that for a given set of synapses,
those that are strong at time t will tend to decay after a while, subject to fluctuations within
the unimodal distribution of the weights achieved in the equilibrium. The more the network
is dense, the more the time of survival of such structures is short, following a power law
evolution. The theoretical analysis of recurrent random networks under additive rules was
performed in Burkitt et al. (2007), who whowed how weights in this case converge to a stable
bimodal distribution. Weights, once they have reached a bound of this bimodal distribution,
stay constant, but the activity regime is no longer Asynchronous Irregular.

As in the random case, no stable structures developed spontaneously in the topographical or
in the control network, either in a purely dendritic delay scheme, or in a mixed axonal and
dendritic delay one. Figure 31 shows the distribution of the standard deviations σ for all the
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weights time series, considered after 50s of simulation, when the network has converged to
an equilibrium (with γ = 0). As one can see, the distribution of the temporal variances is
broad, and the amplitude of the fluctuations has the same order of magnitude compared to the
one of the global weight distribution (with a mean of µ' 34 compared to 26 for the standard
deviation of the stable weight distribution when equilibrium has been reached). This result
implies that, during the equilibrium, even if the global weight distribution is kept constant,
individual weights are always fluctuating within this distribution. This is confirmed with
the inset, showing the weight autocorrelation function, averaged over 5000 individual weight
trajectories sampled randomly.
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Figure 31: Distribution of the standard deviations σ for all the weights time series, considered
after 50s of simulation, when the network has converged to an equilibrium (with γ = 0). The
mean of the distribution is µ = 34. Inset show the weight autocorrelation function, averaged
over 5000 individual weight trajectories sampled randomly.

Unsupervised learning achieved by STDP To see how a stimulus can affect the develop-
ment of the weights, we stimulated the centre of the network with a Poisson process emitting
synchronous volleys of spikes at the rate of 5 Hz in order to force a local area in the network
to fire synchronously. One example of such stimulation is given in Figure 32. The number of
stimulated neurons is set to approximatively 4% of each population (exc/inh). The stimulating
source is also connected with a Gaussian probability profile.

The stimulation was applied after convergence of the weights into a stable state over 150 s,
and then we observe the relaxation process. During the stimulation, we observe synfired ex-
plosions with echo, a phenomenon that has been previously reported in Mehring et al. (2003).
As we can see in Figure 33, after 150 s of stimulation, the distribution of the weights is dras-
tically changed for the weights from stimulated cells to non stimulated cells, compared to
the distribution of the weights between non-stimulated cells that stays roughly constant. On
the top, one can see the average afferent synaptic weights per neuron. Projections within the
centre of the stimulated area are modified during the stimulations, but return quickly to their
equilibrium values as soon as the stimulation is stopped. The average firing rate of the whole
network is only slightly affected by the external stimulation and this wash-out of the memory.
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Figure 32: Stimulation of a localized area within the network by a synchonous volley of
spikes. Top: Raster plots of the neurons, labelled according to their id in the 2D network.
Bottom: Average firing rate in the network, with black line indicating the time of the external
stimulation

16 Discussion

Over-sensitivity to ongoing activity Adding a topographical structure to the network does
not lead to the development of stable connectivity with weight-dependent rules, as was already
reported in random networks (Morrison et al., 2007a). The ongoing bombardment, inherent
to the balanced network regime, is constantly impacting synapses and therefore, the weights
are constantly fluctuating. In this recurrent network, ongoing Poisson activity disrupts any
kind of structure that can be learned by the system, as long as weights stay in a unimodal
distribution, and do not push the system away from the attractor of its ongoing activity. During
stimulation with external inputs, the statistics of the weights can be changed, but as soon as the
stimulation is relaxed, neurons tends to immediately re-learn the incoming “noise” they are
subject to, and go back to their equilibrium. This is a severe problem for memory retention
and emergence of structures in recurrent networks. If weight increments are modelled as
additive, then structures develop (data not shown, but see analytical work of Burkitt et al.
(2007) and Siri et al. (2008)), but the Asynchronous Irregular state is not maintained. The
network forms into co active clusters and progressively transitions into a Synchronous Regular
regime, ending in a stable crystalline state that can hardly be modified. This sensitivity of the
STDP rule to its implementation, and also for example to the way delays are modelled between
pre- and post-synaptic neurons, makes large-scale results hard to interpret.

STDP, since its discovery, has proven to be successful in reproducing generic results, such
as receptive field development (Abbott, 2003, Song and Abbott, 2001), orientation preference
maps (Wenisch et al., 2005), or learning input/output relations such as coordinate transfor-
mation (Davison and Frégnac, 2006), synfire chain formation (Hosaka et al., 2008) and much
more. Nevertheless, almost all those studies ignored the recurrent connections and the ongo-
ing activity, and for storing dynamical patterns and sculpting the spatio-temporal profile of
the correlations within neuronal networks, the rule seems to be inappropriate. The question
of stability over long time scales is often disregarded, even if this is a crucial concern if the
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Figure 33: Stimulation of a localized area within the network by a synchronous volley of
spikes. Top: Mean afferent synaptic weights per neuron, just before, after 50 s of stimulation,
and 100 s after the stimulation. Bottom, average firing rate over the whole network during the
whole simulation. The red lines show when stimulation starts and stops.

system is supposed to be plastic all the time. Memory retention, the stability of the irregular
regime and of the macroscopic quantities is problematic with STDP: as shown in Morrison
et al. (2007a), explosions of the network and convergence to a Synchronous Regular states
can happen if no homeostasis is included to prevent divergences. It is well known that neu-
rons in vitro have the intrinsic property of adapting their synaptic weights according to the
background activity. This homeostatic scaling (Turrigiano and Nelson, 2004) could counter
balance the effect of Hebbian learning, and this could be included in STDP rules.

STDP and BCM The missing link between STDP and BCM is also problematic: since
the BCM theory is a serious candidate in vivo to explain ocular dominance or receptive field
development, a general theory of plasticity should be able to conciliate both mechanisms.
As already said, the theoretical shape of the BCM curve (see Figure 21) can be retrieved if
nearest-neighbour spike interactions are considered for the STDP model (Izhikevich and De-
sai, 2003). Nevertheless, no biological evidence for this has been reported so far. In addition,
even if the general shape of the curve is similar, the sliding threshold θ, acting as an homeo-
static process in the BCM theory, regulating the balance between potentiation and depression
and supposed to vary according to the post-synaptic firing rate history, can not be retrieved.
This homeostatic balance, if incorporated into a more general model of plasticity, may help to
enhance the stability of the system.

Modifications of the STDP rule In the context of supervised learning, some authors (Leg-
enstein et al., 2008, Izhikevich, 2007) have started to propose that STDP could be used com-
bined with an external reward signal. Changes can be accumulated at the synapse level, and
validated only when particular feedback is sent to the system. Such an idea has the advantage
that it can turn on or off the rule in some particular time window, during which the system
is able to learn or not. This is a complementary approach to the homeostatic one. An other
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argument in favour of the fact that STDP may be over-sensitive to the ongoing activity is that,
from an energetic point of view, it may be costly for the system to constantly modify the
synaptic weight, each time a pre/post pairing is performed. Constraining the time windows
during which incoming patterns and/or statistics should be stored may save useless energy. In
that spirit, a solution could be to consider that synapses do not vary under a continuum, but
are more like binary switches that could take discrete values. This is the idea followed by Fusi
and Abbott (2007), and supported by recent biological evidence (Montgomery and Madison,
2004). Transitions between such stable discrete states would be triggered by activity, and
make the synapse more robust to noise. An other possibility is a recently found mechanism
known as “synaptic tagging” (Young et al., 2006). Without going into the biological details,
LTP or LTD can be pre-activated at the synapse level (the synapse is “tagged” during an early
phase), and changes are stored only if confirmed during a late phase (Clopath et al., 2008).
The distinction between early and late phase is again a kind of mechanism that could help in
making the synapse more robust to noise. Nevertheless, these theories are more conceived
based on an Hebbian framework, i.e. with the idea that exact spike times are not the crucial
part of the information, which is more based on the average firing rates.

As we will see in the following Part, and as already suggested by this Discussion, the concept
of STDP needs to be revised in a more general manner. By examining the biological data
gathered since it has been discovered, one can appreciate how general the phenomenon is, and
how the simple double-exponential shape used in this Part reduces its complexity (Lisman and
Spruston, 2005). Instead of trying to play with the network’s structure, and/or the parameters
of the external stimulation, a better understanding of spike timing dependent plasticity need
to be gained. As we will see in the following Part, a lot of biological evidence suggests that
STDP, in this naive and basic form, is not able to reproduce all the biological results observed.
Even if suited for simple problems, its robustness in the face of ongoing activity is severely
impaired, with weights fluctuating without being hard to stabilize. If we consider that memory
is indeed stored in the precise connections strengths between neurons, and if those connections
are supposed to vary by plasticity in an analogue manner, then weight-dependent rules, more
generic and plausible, are problematic from a memory point of view.



144

Part V

Towards a new STDP rule

Summary
17 A more complex view of STDP 141

17.1 STDP as an epiphenomenon ? . . . . . . . . . . . . . . . . . . . . . . . . 141
17.2 Metaplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

18 STDP and metaplasticity 146
18.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
18.2 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

18.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 162
18.2.2 Deriving the BCM rule from the STDP . . . . . . . . . . . . . . . 165

19 Discussion 169



17.1 - STDP as an epiphenomenon ? 145

17 A more complex view of STDP

In this Part, I will try to explain why a new STDP rule is necessary, to circumvent several in-
coherencies found when gathering biological data on associative plasticity, and how this rule
can be mapped, in a metaplasticity framework, to the BCM theory while basic STDP can not
(Izhikevich and Desai, 2003). After having discussed several pieces of evidence from biology,
showing the limitations of STDP, we will explain in detail a plausible biological mechanism
that could explain weight changes in a synapse. The rule, incorporating some homeostatic
constraints in the framework of metaplasticity, will establish a link between different theo-
retical schema of plasticity (STDP, BCM, ABS) with the help of some biophysically realistic
processes. Non-linear interactions between the long term potentation (LTP) and the long term
depression (LTD) molecular transcription pathways will naturally emerge, and we will study
how such a rule behaves in feed-forward and in recurrent networks, similar to those of the
previous Part.

17.1 STDP as an epiphenomenon ?

It has recently been discovered that STDP is a much more complex phenomenon than it may
appears at a simple glance. In this Part, we will review some of the key phenomena that have
been reported on spike timing dependent plasticity, and that are not captured by the classical
view of STDP defined by Eq. 28 in the previous Part.

Heterogeneity of the rule First of all, the shape of the rule seems to be dependent on
the neuronal structures in which recordings were made, or on the cell types considered.
As shown in Figure 34, the same protocol (repeated pre-post pairings at a fixed frequency
fpairing = 1 Hz), in different species and/or anatomical areas or neuron types can lead to a
huge variety of rules. If STDP was the result of a generic optimization principle, it should
take this heterogeneity into account, or be linked with a functional explanation correlated
with the structure. Bell et al. (1997), for example, discovered in the electro sensory lobe of
the electric fish an anti-Hebbian STDP rule, that may be useful from a functional point of
view in achieving the perceptual filtering of expected changes in sensory input produced by
motor action (here, electric discharge). The electric fish builds a sensory representation of its
environment by sending an electrical discharge and establishing a difference between an effer-
ent copy and the electrical signals gathered after interaction with its surroundings. Therefore,
from a coding point of view, it encodes only the difference between what is expected and what
is received, and for that purpose, an anti-Hebbian rule is well-suited. This coding scheme is
in agreement with the predictive coding theory (Rao and Ballard, 1999).

Induction and dependence on the pairing frequency Spike timing dependency plasticity
is usually observed in cortical neurons in vitro with a stereotyped protocol: approximatively
60 pairings are performed at a frequency of fpairing = 1 Hz, with δt = tpost− tpre between
pre- and post-synaptic spikes which is varied. The fact that 60 pairings need to be used is
because plasticity needs to be induced. In Froemke et al. (2006), one can see that the amount
of plasticity which is triggered does not depend linearly on the number of pairings. After an
induction phase, it changes non-linearly up to a saturation plateau, around 60-100 pairings, the
classical values considered in the protocols. This is something which is not taken into account
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Figure 34: Taken from Abbott and Nelson (2000). Illustration of the variability of spike timing
dependent plasticity rules. According to the precise time difference δt between a pre- and a
post-synaptic spike, the synaptic weight can be either depressed or potentiated in many ways,
according to species and/or area.

in models, but performing fewer pairings may not trigger any plastic changes, and performing
more pairings have no further effect on the synapse. 60 pairings seems to be a compromise
to reach the saturation in the plastic changes triggered. In addition, it has been also shown,
in Sjöström et al. (2001), that if the frequency fpairing of the pairing is changed, then the
STDP curve shown in previous Part is not valid any more. Depression is only visible for low
frequency pairings, when 60 pre-post pairings are performed with δt < 0 and fpairing < 20 Hz.
For fpairing > 20 Hz, the synapse undergoes only potentiation, whatever δt. This crucial point
led some authors to consider new models of STDP, taking not only the pairwise interactions
between pre and post, but also higher order interactions such as triplet (pre-post-pre, or post-
pre-post). This is the triplet model, developed in Pfister and Gerstner (2006), which is able to
reproduce the observation that the shape of the STDP rule depends on the pairing frequency.

One other point, not considered so far in models of plasticity, is the fact that STDP changes are
not instantaneous. Protocols are performed, then the final value of the weight is recorded up to
30 minutes later, divided by the number of pairings, and the final value is considered as being
the instantaneous weight modification after each pairing (for an additive model of STDP). By
examining the weight evolution curves found in the STDP literature (Froemke and Dan, 2002,
Froemke et al., 2006, Bi and Poo, 1998, Sjöström et al., 2001) (see for example Figure 35), it
can be seen that the weights seem to evolve continuously, at least for depression, after pairing.
Plasticity is more a synaptic modification which is triggered by a transient stimulation, and
slowly evolves toward a new equilibrium. Understanding the biological mechanisms respon-
sible for those changes, at the molecular level, is necessary to gain an insight on how this
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evolution would behave in vivo, when synapses are constantly impacted by random spikes.

Figure 35: Taken from Froemke and Dan (2002) (4 upper panels) and Froemke et al. (2006)
(2 lower panels). Evolution of the synaptic weights after plasticity induction. Details of the
protocols can be found in the articles. An interesting point is the evolution, as a function of
time, of the EPSP slope after induction. Variations can be observed during the whole window
of observations, up to 30 minutes after the induction.

Asymmetry in the LTP/LTD molecular cascades Recent evidence has shown that LTP
and LTD are not mediated by the same mechanisms, and are therefore not symmetric. Wang
et al. (2005) induced plasticity by STDP protocols using triplets of spikes, such as pre-post-
pre or post-pre-post. If δt1 is the difference between the two first spike times, and δt2 the
difference between the two last one, then one would expect with STDP that if δt1 = δt2,
LTP and LTD should cancel each other and the net result, at the synapse level, should be
almost no modifications, or with the time constant τdep for depression being usually larger
than for potentiation, one might expect LTD to dominate. Nevertheless, authors found a clear
preference for LTP. This difference can be explained by the fact that LTP and LTD are not
mediated by the same mechanisms. To detail the LTP mechanism, notice that at the synapse
level, neurotransmitters (glutamate) can bind to the N-methyl D-aspartate (NMDA) receptors.
If at the same time the post-synaptic cell is depolarized, the magnesium block is relieved
and the NMDA channel opens: free calcium enters the cell, inducing a molecular cascade
that phosphorylates the Ca2+/calmodulin-dependent protein kinase (CaMKII), which in turn
acts on the AMPA receptors activation and/or density. This match between the depolarization
of the post-synaptic cell and the incoming calcium influx is supposed to be achieved, in the
STDP framework, with the action potential that back-propagates from the soma to the synapse
within the dendrite, establishing a temporal window during which LTP can be induced. The
modification of the AMPA receptors sensitivity or density is responsible for LTP, since this is
the channel responsible for the entrance of sodium influx, at the origin of the excitatory post
synaptic potentials (see Part I). Protein kinases, and especially CaMKII are key molecules in
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LTP induction, whereas phosphatase, such as calcineurin, are used in LTD induction (Lisman
et al., 2002, Malinow and Malenka, 2002), through particular L-type Calcium channels, used
by LTD but not by LTP (Bi and Poo, 1998). Distinct mechanisms are taking place at the
synapse level for LTP and LTD, and such evidence suggest that they may interact one with
each other in a highly non linear fashion.

STDP along the dendritic tree Several in vitro studies (Kampa and Stuart, 2006, Letzkus
et al., 2006, Froemke et al., 2005) showed that the shape of the STDP curve obtained by pre-
post pairings in cortical pyramidal neurons depends of the position of the synapse along the
dendritic tree. They found evidence for a plasticity gradient from proximal to distal synapses:
synapses close to the soma are regulated by Hebbian rules, while those on the distal part of the
dendritic tuft are more anti-Hebbian. Since plasticity is regulated by calcium dynamics and
NMDA receptors, the attenuation of the back-propagating spikes within the dendrite and the
dendritic spikes in pyramidal neuron (Larkum et al., 2001) may be valide candidates to explain
this phenomenon. It is interesting to observe that conceptually, this plasticity gradient could
have a functional role in primary sensory cortical areas. We consider a cortical pyramidal
neuron in layer 5, integrating information from the cortex and sending axons back to the
thalamus. Since the thalamo-cortical synapses are established mainly in layer 4, close to
its soma, Hebbian learning rules with STDP will consolidate feed-forward signals coming
directly from the thalamus in parallel with the recurrent cortico-cortical synapses originating
from layers 4/5. In the meanwhile, this pyramidal neuron forms distal synapses in superficial
layers 2/3, so will also integrate, with anti-Hebbian rules, previously processed information:
indeed, since pyramidal neurons of layer 4 project to layers 2/3, information is delayed in these
layers, compared to incoming inputs in layer 4. So this pyramidal neuron in layer 5 may try,
with Hebbian rule close to its soma (layer 4) and anti-Hebbian in its distal dendritic tuft (layers
2/3), to separate the new information from an expected background, based on past electrical
activity reverberated. The gradient of plasticity and the small delay between information
impinging layer 4 and the previously received and integrated information arriving in layers 2/3
(the background) can provide a theoretical substrate to correlate coherent information while,
at the same time decorrelating it from the background. It could be an algorithmic way to build
saliency maps, amplifying the difference between new incoming inputs and the background,
and recent models are now trying to take advantage of these multiple forms of plasticity along
the dendritic tree (Kaneki et al., 2009).

Sensitivity to the post-synaptic neuron As already mentioned in the previous Part, STDP
is often not considered for inhibitory synapses. However, several evidences pointed out that
depending on the celltype of the post-synaptic neuron, the shape of the rule could be different
(see (Caporale and Dan, 2008, Davison and Frégnac, 2006)). For excitatory to inhibitory con-
nections, the rule is inverted (Bell et al., 1997, Tzounopoulos et al., 2004). If δt = tpost− tpre
is positive, then synapse is weakned, and is δt < 0, it is strenghtned. Nevertheless, since the
post-synaptic neuron is inhibitory, the functional consequences, at the network level, are the
same. Rule is also variable at the GABAergic synapses (Haas et al., 2006). This sensitivity to
the post-synaptic celltype can be due to retrograde signals sent from the post-synaptic cell. It
has indeed been shown that endocannabinoids (eCB) are important molecules in both short-
and long-term depression of many synapses in the central nervous system (Chevaleyre et al.,
2006). Hashimotodani et al. (2007) showed how an increase of the calcium concentration
can promote the generation of eCB by the post-synaptic neuron, captured by the pre-synaptic
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neuron through CB1 endocannabinoid receptors. These receptors are known to have an im-
pact on the LTD molecular pathway, presumably by inhibiting presynaptic transmitter release
(Sjöström et al., 2003).

17.2 Metaplasticity

STDP itself should be seen as a dynamical process that may change and evolve according
to the state of the system, and this plasticity of the synaptic plasticity itself is referred to
as metaplasticity (Abraham and Bear, 1996, Bear, 1995). A lot of evidence supports the idea
that STDP should adapt and depend on other variables, such as, for example, the post-synaptic
membrane potential (Ngezahayo et al., 2000), neuromodulation (Zhang et al., 2009), amount
and kinetics of the calcium that may enter into the synapse (Yang et al., 1999). The idea of
metaplasticity is that the synapse’s previous history of activity influences its current plasticity.

The interactions over long time scales between the activity of the synapse and its plasticity
can be observed with so-called priming experiments. Pre-activation of the synapse, either with
LTP or LTD, has an impact on the reactivation of these LTP or LTD pathways for up to an
hour. Experimental studies, especially in the Schäffer collateral pathways (SC) in hippocam-
pal slices, have shown some “priming” effects: Huang et al. (1992) show that pre-activation,
with weak stimulation of some collateral pathways projecting to a post-synaptic neuron can
lead to potentiation. Reactivation of the same pathways, up to one hour later, led to a smaller
potentiation than in a control experiment where the weak tetanic pre-stimulation was not ap-
plied. This means that activity dependent changes can trigger mechanisms in the synapses
that last over long time scales and influence plasticity over time. Similar priming can be
observed with depression (Mockett et al., 2002). This is closely related to all the “tagging”
experiments of Frey and Morris (1997), and these results lead to the idea of an early and late
phase for both changes (see Clopath et al. (2008) for a modelling study) to distinguish be-
tween plasticity induction and consolidation. STDP, in its simple form, should be explained
in a framework that takes these results into account. More details on these protocols and on
their results will be developed in the following article, but the idea is that extra time constants
may be missing in the simple STDP framework. If the 20 ms time windows of the double
exponential shape (τpot and τdep, see Figure 23) could be linked with the time course of the
calcium influx within the synapse, biological internal mechanisms validating or consolidating
the changes may have extra time constants that are much longer, and they should certainly be
taken into account in order to understand the role of plasticity. The internal phosphorylation
of the CaMKII molecule (LTP), or the evolution of the calcineurin concentration (LTD) may
filter fast and transient changes induced by the instantaneous spike pairings. The synaptic
changes at a given time t at the synapse are influenced by an additional variable which is the
past activity dependent plasticity of the synapse.

Sensitivity to neuromodulators Associative plasticity is very sensitive to the neuromodu-
lation, such as the endocannabinoids impact on the LTD, previously shown. Indeed, STDP
is sensitive to the neuromodulators that are released by numerous varicosities (do not require
a postsynaptic cleft) and diffuse in the extracellular medium. For instance, catecholaminer-
gic ascending axons from subcortical origin run along the cortex from the frontal to occipital
cortex and one axon can influence at the same time plasticity processes at synapses located in
different cortical areas. It has been recently shown in Zhang et al. (2009) that in hippocampal
synapses, STDP can be strongly modulated by dopamine. If dopamine is present, then the
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depression part of the STDP curve vanishes and the rule is turned into a simple covariance
rule, almost symmetric, where both pre-post and post-pre pairings lead to potentiation. This
regulation of plasticity by self- or externally generated neuromodulators affects the dynamical
aspect of plasticity and contributes to the metaplasticity.

Towards new models of STDP More and more models are now trying to understand STDP
in the more general framework of metaplasticity. An attempt was made by Froemke and Dan
(2002), with the idea to weights the spikes within the nearest-neighbours interaction scheme
of the STDP pairings, to promote the influence of the closest by adding a suppression term.
The triplet model of STDP (Pfister and Gerstner, 2006), which reproduces the asymmetry
in the LTP and LTD pathways observed by Wang et al. (2005) considered not only pairs of
spikes in the framework of STDP, but also triplet interaction. Interactions between spikes
are not only made between pre-post and post-pre pairs, but also with all the possible triplets
(pre-post-pre and post-pre-post). The model comes up with two time constants, either for
potentiation or depression (so four in total): one responsible for the short STDP time window
(the one observed in the biological data of Bi and Poo (1998)), and a longer one to capture
the non-linearities imposed by the triplets. The triplet rule is able to reproduce the results
from Sjöström et al. (2001) and the dependence on the pairing frequency fpairing, but also
to establish a link with the BCM framework, under several constraints. The triplet rule can
promote rate-based competition, a feature which is missing with classical STDP. The BCM or
ABS rules, introduced in Part IV, are metaplastic: the modification of the synapse depend on
the sliding thresholds, which depend on the history of the post-synaptic spiking activity. The
rules adapt smoothly as a function of the level of activity. The link between STDP and BCM
theory is important to conciliate this two views of associative learning.

Similarly, Clopath et al. (2010) designed a rule sensitive to the post-synaptic membrane po-
tential. This abstract model is also able to tackle the issue of frequency dependence, and also
to explain some in vitro results with clamped membrane potentials. It also establishes a link
with the BCM theory and has been shown to reproduce the development of receptive fields
in a small recurrent network, as in the visual cortex. Both models are phenomenological, i.e.
their internal quantities do not intend to be biological: they only focus on the final behaviour,
and do not pretend to give a biophysical explanation of STDP. In the same spirit, the work of
Savin et al. (2010) shows that STDP, when combined with internal homeostatic constraints,
can perform independent components analysis and be used in blind source separation prob-
lems. This choice of implementation allows to keep a rule simple enough to be simulated in
networks of neurons, nevertheless, none of them has been applied to large-scale networks of
neurons.

In contrast, more bio-realistic models, based mainly on calcium dynamics, aim at explaining
STDP in terms of biochemical signalling within the membrane. This is the case for example
in Lisman (1994), Shouval et al. (2002), Graupner and Brunel (2007), Rubin et al. (2005),
Badoual et al. (2006) and Saudargiene et al. (2005). All those biophysical models rely either
on the Ca2+/CAMKII phosphorylation and bistability, on calcium concentration, or on the
dynamics of the AMPA receptors. Drawback of such models is that their complexity prevent
them from being implemented in large networks.
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18 STDP and metaplasticity

18.1 Main results

The study presented in the following draft is a theoretical attempt to better understand how
stable synaptic modifications could occur in recurrent random networks. It provides a meta-
plastic rule of plasticity based on a putative biophysical mechanism based able to reproduce
some classical results obtained in literature and establishing a link between STDP and the
BCM theory. The rule is tested in feed-forward and recurrent networks of integrate-and-fire
neurons. I designed the experiments and the paradigm in collaboration with S. El Boustani,
and we worked together equally on the project. Materials & Methods are described as supple-
mentary materials.
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1 Avenue de la Terrasse,

91198 Gif-sur-Yvette, France.

Abstract

The mammalian cerebral cortex is characterized by irregular spontaneous activity, but how
relevant information is processed and learned in such noisy states remains unknown. The usual
plasticity rules are sensitive to spontaneous activity and therefore cannot operate in realistic
network states. Here, we present a new class of learning rules which is based on metaplasticity.
Synaptic metaplasticity can solve the problem of stable learning in noisy states, and at the same
time, it naturally encompasses other known types of learning rule, placing them into a coherent
framework. Finally, the metaplastic learning rule is shown to be consistent with a number of
known molecular pathways, which leads to experimentally testable predictions.
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Introduction

Various forms of synaptic plasticity have been discovered and characterized experimentally as
well as theoretically. An identified type of associative plasticity is based on the relative spike
timing between pre- and post-synaptic cells (Bell et al., 1997, Markram et al., 1997, Bi and Poo,
1998). This so-called spike timing dependent plasticity (STDP) has been shown to produce
a form of long-term potentiation (LTP) and depression (LTD) in an asymmetric way depend-
ing on the temporal order of pre- and post-synaptic cell firing. Models have been proposed to
capture such plasticity mechanisms and have been very successful in explaining receptive field
emergence, synaptic competition and stability (van Rossum et al., 2000, Song et al., 2000, Song
and Abbott, 2001, Gütig et al., 2003, Wenisch et al., 2005). However, previous STDP models
suffer from an important limitation, their sensitivity to spontaneous activity. Because cere-
bral cortex is characterized by irregular spontaneous activity (Softky and Koch, 1993, Shadlen
and Newsome, 1998), classical STDP models cannot be used to learn in the context of such
stochastic-like activity states.

This problem was identified in computational models of realistic activity states (Morrison
et al., 2007, Billings and van Rossum, 2009). For appropriate parameters, balanced networks
of integrate-and-fire neurons can display asynchronous irregular (AI) states (Brunel, 2000, Vo-
gels and Abbott, 2005, Kumar et al., 2008, Marre et al., 2009), which produce spike discharge
patterns similar to those in awake animals (El Boustani et al., 2007). If endowed with a weight-
dependent STDP rule, such networks can sustain AI regimes with stable synaptic weight distri-
butions (Morrison et al., 2007). In this case, however, individual synaptic weights are subject
to strong fluctuations due to the ongoing spiking activity. Consequently, changes in the weight
distributions are always transient because synaptic weights relax to their stable stationary dis-
tribution. Due to this “catastrophic forgetting” effect, memory retention is impossible in these
models (Morrison et al., 2007, Billings and van Rossum, 2009).

We investigate here a natural way to circumvent this problem through metaplasticity. Since
early work on LTP and LTD, the need for higher-order regulation of plasticity rules has been
evident. This process, termed metaplasticity (Deisseroth et al., 1995, Abraham and Bear, 1996),
has been shown to take place through various molecular pathways and to be critical for the sta-
bilization of learned statistics (see Abraham (2008) and references therein). In its more specific
definition, metaplasticity is a change in the plasticity rule that depends on the past history of
the synapse. One major role of metaplasticity is to promote in a conditional way (dependent
on the prior history of the network) persistent changes in synaptic weights during learning.
A cascade-based synaptic model that displays metaplasticity has been introduced previously
(Fusi et al., 2005). However, this model did not incorporate STDP. Although knowledge on the
biomolecular processes underlying STDP has tremendously progressed, no simple or biophysical
model has been able to display at the same time these important features.

We suggest a new class of model of synaptic plasticity that includes metaplasticity based on
a number of experimental observations. First, important non-linear interactions were observed
if spike pairings occur closely in time (Sjöström et al., 2001, Wang et al., 2005). Second, exper-
iments were conducted by including a priming protocol in classical LTP/LTD experiments with
high-frequency and low-frequency stimulation (Huang et al., 1992, Christie and Abraham, 1992,
Wang et al., 1998, Mockett et al., 2002), showing how pre-activation of LTP or LTD mecha-
nisms could impact their re-activation. Based on these results, it appears that plastic processes
occurring through the same molecular pathways exhibit regulation on three distinct time scales
that account respectively for the nature of synaptic weight changes (STDP rule), the synaptic
competition (short-term interactions) and metaplasticity (long-term interactions). We propose

2



here a model in which the functional diversity of the synaptic effects across these times scales
naturally emerge. This metaplastic STDP (mSTDP) model is based on a putative biomolecular
interaction between kinases and phosphatases acting on the synaptic weights, and is inspired by
experimental data on the effect of priming stimulations on LTP and LTD induction in the hip-
pocampus. The mSTDP model is shown to produce metaplasticity and to reproduce non-linear
interactions observed in STDP experiments, thus making a link between experimental results
which seemed difficult to integrate in a common framework.

Results

The mSTDP model is based on electrophysiological in vitro results reported previously (Wang
et al., 2005) showing evidence that LTP and LTD are elicited by calcium influx through dedi-
cated channels, NMDA and L-type respectively. For LTP, and for every pre-post pairing, calcium
enters the cell through NMDA channels and binds to calmodulin. We consider that the STDP
window for LTP is defined by an exponential curve, which follows the kinetics of the amount
of Ca2+/calmodulin that will be formed at the time of the post-synaptic spike. This variable
will be labelled xLTP. The action of this Ca2+/calmodulin protein is two-fold. On a very short
time-scale, it will activate a kinase K that will phosphorylate AMPA receptors thus increasing
the excitatory synaptic conductance, proving a straightforward biophysical substrate of LTP.
As a second stage, this protein will activate another pathway resulting in a non-linear negative
feedback on the kinase activation, occurring on a slower time scale. This additional molecu-
lar pathway is critical in this model and has not been taken into account in previous models
of calcium-dependent kinase kinetics (Lisman, 1989, 1994, Lisman et al., 2002, Graupner and
Brunel, 2007). The slow and fast actions of Ca2+/calmodulin are justified by the transient
higher threshold for LTP induction following a priming stimulation of the test pathway (Huang
et al., 1992).

In the model, these two antagonistic actions will be implemented through two different
operators. The rapid Ca2+/calmodulin action is modelled as an instantaneous update of synaptic
weight given by the value of xLTP at the time of the post-synaptic spike. We chose a linear
relationship for the sake of simplicity, but a monotonic non-linear function involving detailed
biophysical processes could be used as well. The long lasting negative regulation will be modelled
as an average of exp(xLTP) over the past history. This function accounts for the strong non-linear
increase in the LTP threshold when weak tetanic priming stimulations are used prior to a strong
tetanic induction (Huang et al., 1992). The net effect on the synaptic weight is proportional to
the kinase concentration thus resulting in the rectified difference between these two terms (see
Supplementary Material). This LTP mechanism is depicted in Fig. 1A and obeys the following
equation for instantaneous weight changes: induced by LTP δwLTP

δwLTP(t) = [
∑

tpost

xLTP(t)δ(t− tpost)−
αLTP

T

∫ t

−∞
dτe(τ−t)/T eβxLTP(τ)]+ (1)

where αLTP measures the magnitude of the negative feedback, T is the slow time constant and
β dictates the increased rate of suppression feedback.

Regarding LTD, it has been shown that priming stimulation can facilitate LTD induction
with low frequency stimulation (Christie and Abraham, 1992, Wang et al., 1998, Mockett et al.,
2002). Although the direct action of LTD is assumed to be conveyed by calcium influx through
dedicated L-type channels (Graef et al., 1999, Wang et al., 2005), the priming effect has been
shown to occur through NMDA channels and to covary with the metaplasticity observed for LTP
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Figure 1: A model for spike-timing dependent plasticity with metaplasticity (mSTDP). A. Mecha-
nism of long-term potentiation with a fast potentiation action and slow negative feedback: a pairing
protocol is depicted on the right with the time evolution of each variable. The slowly increasing
threshold progressively decreases the net effect on the synaptic weight. The pairing time difference
δt is relative to the pre-synaptic spike time δt = tpost− tpre. B. Mechanism of long-term depression
with a fast depression action and facilitation produced by LTP negative feedback: on the right, a
triplet protocol illustrates how post-pre pairings can increase the net effect of LTD on the synaptic
weight. C. Typical STDP relation obtained with a simulated pairing protocol. Gray error-bars in
the graph are taken from Wang et al. (2005) recorded in hippocampal neurons for δt equals 10 ms
and -10 ms respectively. D. LTP and LTD dependency on the pairing frequency for 10 ms and
-10 ms respectively. In gray, data obtained for visual cortex neurons by Sjöström et al. (2001) for
the same protocol. E. LTP and LTD for triplet (denoted Tri) protocols compared to experimental
data obtained by Wang et al. (2005) (upper panel: pre-post-pre; lower panel: post-pre-post). The
shaded columns correspond to the control recordings for each protocol in the abscissa (with time
intervals between each spike). The filled columns correspond to the model predictions. The last
set of columns represents the condition where L-type calcium channels are blocked with nimo, an
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(Mockett et al., 2002). Indeed, LTD facilitation and LTP suppression are both elicited in priming
experiments that activate NMDA receptors. We will assume that the direct action of “pre after
post” pairing results in the binding of Ca2+/calmodulin (variable xLTD) to a phosphatase that
will be responsible for rapid AMPA receptor de-phosphorylation and endocytosis. Moreover,
we hypothesize that this process can be facilitated by the Ca2+/calmodulin-dependent negative
feedback generated through NMDA channels that will make more Ca2+/calmodulin molecules
available for the phosphatase. This is modelled as a buffering term inversely proportional to
the slow LTP action exp(xLTP), averaged over a slow time constant. This LTD mechanism is
depicted in Fig. 1B and obeys the following equation:

δwLTD(t) = [
∑

tpre

xLTD(t)δ(t− tpre)−
αLTD

T

∫ t

−∞
dτe(τ−t)/T e−βxLTP(τ)]+ (2)

where αLTD measures the magnitude of the facilitation of LTD. The time evolution of the
synaptic weights is given by the integral over the synaptic changes :

w(t) = λ

∫ t

−∞
ds (δwLTP (s)− δwLTD(s)) (3)

with λ being the learning rate.
To determine if this model is consistent with STDP experiments, we first show that its

predictions reproduce the plasticity effects reported for first and second order inter-spike inter-
actions. In Fig. 1C, the bi-exponential STDP curve was obtained using a pairing protocol at
1 Hz. Triplet interactions were obtained in Fig. 1D-E for a given set of parameters chosen to
qualitatively match the data reported in Sjöström et al. (2001) and Wang et al. (2005). Previous
modelling efforts have also succeeded in fitting these data with similar short-term interactions
(Pfister and Gerstner, 2006, Clopath et al., 2010). Here, the short-term interaction is inherited
from the assumption that the Ca2+-bound calmodulin concentration decays slowly compared
to the STDP time constant. In Fig. 1D, plasticity curves are plotted for a fixed pairing in-
terval occurring at various frequencies. In particular, for a post-pre pairing, the synapse first
experiences depression followed by potentiation at higher frequencies, as reported in Sjöström
et al. (2001). Figure 1E displays the synaptic changes for different patterns of pre-synaptic
and post-synaptic spike triplet patterns (Wang et al., 2005). In a pre-post-pre firing pattern,
the synapse displays virtually no plasticity if the second pre-synaptic spike is close to the post-
synaptic spike. Whereas significant potentiation is obtained for longer intervals or post-pre-post
patterns that would produce depression if short-term interactions were neglected. Moreover,
when simulating L-type channel blockade by forcing xLTD to zero, we obtained a comparable
potentiation between pre-post-pre and post-pre-post patterns, a prediction in accordance with
experimental data.

To further show the generality of this mechanism, we studied the relationship between
mSTDP and the BCM plasticity rule (Bienenstock et al., 1982). Previous theoretical stud-
ies have succeeded in reproducing the BCM rule by considering non-linear interactions between
pre-synaptic and post-synaptic spike patterns in STDP (Izhikevich and Desai, 2003, Burkitt
et al., 2004, Pfister and Gerstner, 2006, Clopath et al., 2010). This fit was achieved either
by assuming first-neighbour interactions between spikes (Izhikevich and Desai, 2003, Burkitt
et al., 2004) or short-term interactions involving slower variables (Pfister and Gerstner, 2006,
Clopath et al., 2010). However, these models were unable to account for one eminent feature
of the BCM rule, the sliding threshold, which was either included as an ad-hoc mechanism or
was absent (Bush et al., 2010). The sliding threshold is hyposits a supra-linear function of the
past post-synaptic firing rate and has been introduced to ensure non trivial convergence in the
plasticity algorithm (Bienenstock et al., 1982). Moreover, experimental evidence has pointed
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elicit LTD facilitation.
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out the necessity of additional mechanisms regulating plasticity induction – a process termed
metaplasticity (Huang et al., 1992, Christie and Abraham, 1992, Mayford et al., 1995, Deisseroth
et al., 1995, Abraham and Bear, 1996). In Fig. 2A, we first plotted the amplitude and sign of
plasticity for various pre-synaptic and post-synaptic firing in a model consisting of two neurons
firing as Poisson processes. Figure 2B shows two BCM curves that correspond to selected lines
in the diagram. These curves were computed in absence of slow variables and are compared to
theoretical predictions in bold. The depression domain and thus the BCM threshold increases
with pre-synaptic firing as expected from the model definition (see Supplementary Material).
This dependency creates competition between synapses originating from neurons with different
firing rates, a property that classical STDP with all-to-all interactions lacks (Burkitt et al.,
2004). To further explore this model, we then studied the role of the slow variables δwth

LTP and
δwth

LTD in modulating the BCM threshold with the past post-synaptic firing rate history. We
assumed that the slow time constant T is slow enough to be considered constant during the
BCM curve measurement. For T → ∞, the slow action on LTP and LTD are contained in
the coefficients αLTP and αLTD of Eqs. 1,2 that act as constant thresholds defined by the past
activity regime. Figure 2C shows the BCM thresholds obtained for different values of these
coefficients. For a given parameter set and for a finite time constant T=10 sec, successive post-
synaptic firing rates resulted in effective stationary variables δwth

LTP and δwth
LTD that are plotted

as trajectories in the figure. Figure 2D, shows the corresponding BCM threshold as a function of
the past post-synaptic firing rate assumed constant during the BCM protocol. This relationship
is supra-linear as required by the theory for stabilizing the learning rule (Bienenstock et al.,
1982).

To confirm that the mSTDP model faithfully reproduces the dynamics of metaplasticity as
reported in vitro, we replicated priming experiments that were shown to either inhibit LTP or fa-
cilitate LTD. In Fig. 2E, the protocol used in Huang et al. (1992) was reproduced in a two-neuron
model. When weak tetanus priming stimulations were used before subsequent strong tetanus
stimulation (see Supplementary Material) the resulting synaptic weight change was considerably
lower than the change elicited by the strong tetanus stimulation alone. Pre-activation of LTP in-
creases its induction threshold and then decreases the amount of LTP obtained during the strong
tetanus stimulation. Conversely, LTD induction by low-frequency stimulation was significantly
facilitated when a previous low-frequency priming stimulation was used (Fig. 2F). This result
is in accordance with LTD facilitation reported by (Christie and Abraham, 1992, Wang et al.,
1998, Mockett et al., 2002). Low frequency stimulation of the LTD pathway decreases the induc-
tion threshold for LTD, and therefore increases the amount of depression compared to a control
situation without priming (See Supplementary Material). Moreover, in Mockett et al. (2002), it
was shown that this facilitation occurs through NMDA channels and is concurrent with LTP in-
hibition, which is in accordance with our definition of the slow variables both depending in xLTP.

To show that the mSTDP model is robust to ongoing activity, we investigated several stim-
ulation paradigms, from single-cell to network models. At the single-cell level, we considered a
pre-synaptic population of 1,000 excitatory neurons and 250 inhibitory neurons projecting to a
post-synaptic neuron, where only the excitatory synapses were subject to plasticity. To mimic
the stochastic ongoing activity observed in vivo, each pre-synaptic neuron followed a Poisson
process with a mean rate of 10 spikes/sec. The parameters αLTP and αLTD were chosen such
that no synaptic changes were observed in this regime - considered as spontaneous activity. We
separately considered the effect of heterogeneous pre-synaptic firing rate and synchrony within
the pre-synaptic neurons. The non-linear inter-spike interactions responsible for the BCM plas-
ticity can create competition between groups of neurons with different firing rates (Fig. 3A). We
thus increased the firing rate of half the pre-synaptic excitatory neurons and indeed observed
a rapid separation of their synaptic weights compared to those of the unstimulated neurons
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Figure 3: The BCM sliding threshold is predicted by the mSTDP model. A. Illustration of the feed-
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receives Poisson input from two pre-synaptic Populations. After 20 sec, the pre-synaptic neurons
in population 2 double their firing rates from 8 to 16 spikes/sec (black curve) whereas the other
population remain unchanged (gray curve). The post-synaptic neuron’s firing rate is shown in green
and individual synaptic weights in light gray (bottom). The dashed bar indicates the stimulation
duration. C. Time evolution of the fast variables δwLTP/LTD (black) and the corresponding slow

variables δwth
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LTD (blue). These quantities are depicted in light color on the left
for Population 1 and in dark color on the right for Population 2. The y-axis is plotted with
a logarithmic scale. D. The trajectory in the space of slow and fast variables for Population 1
(light colours) and population 2 (dark colors). The x-axis is plotted with a logarithmic scale. E.
Same as in B but with a different protocol where Population 2 neurons are synchronous Poisson
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are synchronous Poisson processes (c=25%) between 270 sec and 420 sec (gray cross-hatched bar).
In dotted lines, the time evolution of the population mean synaptic weights are shown when only
the first correlated stimulation is applied. F,G. Same as in C and D.
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(Fig. 3B). This rapid plasticity phase was then followed by a phase where LTP was inacti-
vated whereas LTD act on all synapses to scale the overall incoming synaptic activity until
the variables δwLTP and δwLTP for both populations returned under their respective thresh-
olds (Fig. 3C). The resulting post-synaptic firing rate was slightly diminished and the synaptic
weights were perfectly stable in this new ongoing regime (Fig. 3B). In the phase space of both
rapid and slow variables, the system trajectory is a loop that crosses the equality line and goes
back to its origin point (Fig. 3D) thus effectively producing the desired BCM sliding threshold.
The phase space trajectory for the high-firing rate population is exposed to stronger depression
above the threshold compared to the unchanged stimulation. Therefore, heterogeneous firing
rates elicit competitive synaptic weight scaling that will ensure that the fast variables return
under their respective thresholds thus resulting in an overall diminution and stabilization of
individual synaptic weights.

We next consider the case of correlated Poisson processes with a fixed mean firing rate.
As reported in Song and Abbott (2001), if half the pre-synaptic neurons are driven by corre-
lated synchronous inputs, inter-synaptic competition occurs and produces two separate synaptic
weight distributions corresponding to each population. In Fig. 3E, in the first stage half the
pre-synaptic neurons were driven by correlated Poisson processes (correlation coefficient of 0.25).
The resulting synaptic weight distribution after the rapid learning phase is two separate uni-
modal distributions. This phase was then followed by a normalization phase that brings back
the fast variables back below their induction thresholds. To show that these changes are not irre-
versible and that homogeneous distributions can be recovered with appropriate synaptic inputs,
we then reversed the two population spiking patterns for the same stimulation duration. The
final distribution is a unimodal distribution where both population synaptic weights are again
mixed up. This second stimulation will bring back the fast variables near the identity line as can
be seen in the time evolution of all variables (Fig. 3F). The full evolution of the system is shown
in Fig. 3G where quasi-reversibility is illustrated by the overlapping population curves. From
this result, we conclude that uncorrelated firing can segregate subpopulations of pre-synaptic
neurons, but mainly results in down-scaling the overall synaptic weight distribution, whereas
correlated inputs can elevate a subset of synaptic weights, thus making them more efficient in
driving the post-synaptic neuron.

Finally, we considered the difficult problem of synaptic plasticity in recurrent networks dis-
playing in vivo-like spontaneous activity. In this case, the synaptic weights directly change the
network dynamics and conversely. We used balanced neuron networks, which have been shown
to produce asynchronous irregular firing regimes (van Vreeswijk and Sompolinsky, 1996, 1998,
Brunel, 2000) that are similar to the cortical activity observed in vivo (El Boustani et al., 2007).
We compared a classic weight-dependent STDP rule (van Rossum et al., 2000) and the mSTDP
rule in a topological network displaying an AI regime with a stable synaptic weight distribution
(see Materials and Methods). A circular region of the network was stimulated with a differ-
ent external pattern, while recurrent synaptic connections within and between stimulated and
unstimulated regions were monitored (Fig. 4A). In these simulations, plasticity was authorized
only within recurrent loops and externally driven synapses were kept constant. When the net-
work was stimulated with uncorrelated Poisson inputs which increased the mean input rate,
the recurrent synaptic weights strongly depressed during the stimulation (Fig. 4B-C, mSTDP).
These changes were limited around the stimulated area (blue patch) since recurrent connection
distribution was small compared to the size of the externally driven patch. These modifications
did not last in the classical STDP model (Fig. 4B-C, STDP), because of the spontaneous net-
work activity. This “catastrophic forgetting” effect was cancelled by the mSTDP model, which
stabilized the induced synaptic changes (Fig. 4B-C, mSTDP). Only synaptic weights involving
a direct connection with the stimulated region were affected. As a direct consequence, neuron
firing rates in the stimulated region significantly diminished compared to the surrounding region
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(Fig. 4D-E).

We also computed the spatio-temporal membrane potential cross-correlation between a neu-
ron in the centre of the circular region and a row of neurons spanning the network. Figure 4F-G
shows the spatio-temporal correlation landscapes, before and after stimulation respectively. The
temporal behaviour is affected and the oscillatory stripes were enhanced and extended further
in time after the stimulation. The spatial profiles dramatically broaded over time. They initial
and final patterns can be compared in Fig 4H. Therefore, when mSTDP is acting on synaptic
interactions, spatio-temporal statistics in the ongoing activity can be modified by the evoked
activity in a stable way without disrupting the AI regime.

To conclude, we have shown that mSTDP can generalize a number of previous models and
experiments on synaptic plasticity: it provides a plausible biophysical substrate for a sliding
plasticity threshold and metaplasticity, and it can lead to stable learning in the presence of
spontaneous activity without disturbing the network activity state. Moreover, the model ingre-
dients are consistent with known molecular pathways involved in associative synaptic plasticity.
Previous work has suggested that a likely candidate to mediate metaplasticity processes could be
an auto-phosphorylated state of calcium/calmodulin kinase II (Mayford et al., 1995, Bear, 1995,
Giese et al., 1998, Elgersma et al., 2002, Zhang et al., 2005). In particular, auto-phosphorylation
at site Thr305/306 has an suppresive effect on the calmodulin kinase binding, acting on a very
slow time scale as described in our model (Elgersma et al., 2002, Zhang et al., 2005). The
CaMKII mechanism has been studied in theoretical models (Lisman, 1989, 1994, Lisman et al.,
2002, Graupner and Brunel, 2007), showing that it is well suited to induce multi-stability states
However, these models did not incorporate the slow negative feedback necessary to produce
the BCM sliding threshold. Following Wang et al. (2005), LTD could be mediated through
calmodulin-dependent activation of calcineurin following calcium influx trough L-type channels.
We made an additional assumption regarding the availability of putative calcineurin for LTD
when priming stimulations elicit LTP negative feedback. This hypothesis provides the facilita-
tion term for LTD, which is an important ingredient of the mSTDP mechanism. This critical
assumption can be tested experimentally to directly verify the present molecular model.
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18.2 Supplementary materials

18.2.1 Materials and Methods

The mSTDP rule In this Part, we describe in detail the implementation of the mSTDP rule
and the corresponding equations. We will first describe the long-term potentiation (LTP).
For a given connection, every pre-synaptic spike elicits an instantaneous increment of a vari-
able rLTP followed by exponential decay with a time constant τLTP. The ordinary differential
equation corresponding to this eligibility trace is given by:

τLTP
drLTP

dt
=−rLTP +∑

tpre

δ(t− tpre) (36)

Once a post-synaptic spike is triggered, the current value of the LTP eligibility trace is used
to determine the current increment of the variable xLTP mimicking the amount of bound
Ca2+/calmodulin produced, which decays with a slower time constant TLTP

TLTP
dxLTP

dt
=−xLTP + ∑

tpost

rLTP(t)δ(t− tpost) (37)

xLTP will be used to define the two actions on the kinase and their subsequent effect on the
synaptic weight. The instantaneous action of LTP takes place at the post-synaptic spike time
and results in an increase given by the current value of xLTP. This term corresponds to the
calcium-dependent kinase phosphorylation of AMPARs and can be written ∑tpost xLTP(t)δ(t−
tpost). The second component describes the negative feedback with a extremely slow time
constant and thus can monitor the past history of a non-linear function of xLTP. We hypothesize
that this inhibitory term can be modelled as an exponential operator on xLTP averaged over a
long time interval T and can thus be written αLTP

T
∫ t
−∞

dτe(τ−t)/T eβxLTP(τ). The coefficient αLTP
defines the impact of negative feedback relative to the instantaneous potentiation effect and β

determines the rate of increase of the second term. The complete synaptic increment at time t
is given by the integration over discrete events preceding t of the rectified difference between
these two terms

wLTP(t) = λ

∫ t

−∞

ds

[
∑
tpost

xLTP(s)δ(s− tpost)−
αLTP

T

∫ t

−∞

dτe(τ−t)/T eβxLTP(τ)

]

+

(38)

= λ

∫ t

−∞

ds
[
δwLTP(s)−δwth

LTP(t))
]
+

(39)

where λ is the learning rate of the rule. We next discuss the equations describing long-term de-
pression (LTD). Similarly to LTP, each post-synaptic spike elicits an instantaneous increment
of a variable rLT D followed by exponential decay with time constant τLTD

τLTD
drLTD

dt
=−rLTD +α ∑

tpost

δ(t− tpost) (40)

where α accounts for the asymmetric impact of the LTD and LTP sides of STDP. This variable
is used to determine the increment of the slower variable xLTP, representing the amount of
available Ca2+/calmodulin produced through calcium influx through L-type channels which
decays with a time constant TLTD. This update occurs at each pre-synaptic spike:

TLTD
dxLTD

dt
=−xLTD +∑

tpre

rLTD(t)δ(t− tpre) (41)
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This molecule is hypothesized to bind to a phosphatase which has a rapid effect on the AM-
PAR endocytosis that will act to reduce the net synaptic weight of the synapse. We will as-
sume that this effect is instantaneous and linear in the synaptic weight although any monotonic
non-linear function could work as well. This is described by a Dirac delta operator on the vari-
able xLTD at the time the post-synaptic neuron has fired ∑tpre xLTD(t)δ(t− tpre). Moreover, as
the LTD induction depends on Ca2+/calmodulin which also binds with the kinase through
NMDA channels, the negative feedback on the kinase will make more Ca2+/calmodulin
available for the phosphatase. This can be accounted for by introducing an additional
term that is inversely proportional to this inhibitory term averaged over the past history
αLTD

T
∫ t
−∞

dτe(τ−t)/T e−βxLTP(τ). The coefficient αLTD is the magnitude of facilitation of LTD.
The net depressive effect on the synaptic weight at time t is given by the integration over the
rectified difference between discrete events and the facilitation term

wLTD(t) = λ

∫ t

−∞

ds

[
∑
tpre

xLTD(s)δ(s− tpre)−
αLTD

T

∫ t

−∞

dτe(τ−t)/T e−βxLTP(τ)

]

+

(42)

= λ

∫ t

−∞

ds
[
δwLTD(s)−δwth

LTD(t))
]
+

(43)

Altogether, the synaptic weight fluctuations are dictated by the difference between LTP and
LTD

w(t) = wLTP(t)−wLTD(t) (44)

Neuron Model We consider leaky conductance-based integrate-and-fire neurons, with
membrane time constant τm = 20 ms, and resting membrane potential Vm =−70 mV. When
Vm reaches the spiking threshold Vthresh =−54 mV, a spike is generated and the membrane po-
tential is held at the resting potential for a refractory period of duration τref = 5 ms. Synaptic
connections are modeled as conductance changes

τm
dV (t)

dt
= (Vrest−V (t))+gexc(t)(Eexc−V (t))+ginh(t)(Einh−V (t)) (45)

where the reversal potentials are Eexc = 0 mV and Einh =−70 mV. The synaptic activation is
modelled as an instantaneous conductance increase followed by exponential decay:

τexc
dgexc(t)

dt
= −gexc(t)+Sexc(t) (46)

τinh
dginh(t)

dt
= −ginh(t)+Sinh(t) (47)

with time constants τexc = 5 ms and τinh = 5 ms. Sexc/inh(t) are the synaptic spike trains -point
processes- coming from the excitatory and inhibitory populations respectively. The integra-
tion time step of our simulations was 0.1 ms.

Feed-forward simulations In all feed-forward simulations, parameters for the plasticity
were β = 0.1, αLTP = 5, αLTD = 2.5, T = 50 s. Initial weights for the pre-synaptic population
were winit = 0.33 nS, and wmax = 1.5 nS. The ratio between excitatory and inhibitory weights
is such that winh = 15wexc. Every neuron in the pre-synaptic population had a constant firing
rate of 10 Hz. In the rate protocol stimulation, half of the pre-synaptic neurons had their firing
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rate increased to 20 Hz, while in the correlation protocol, half of the neurons kept the same
firing rate but were turned, with the help of a multiple interaction process (Kuhn et al., 2003),
into sources with a correlation coefficient of 0.25.

Priming simulations For the LTP priming protocol, we used a two-neurons model. The
pre-synaptic neuron received 10 weak tetanic bursts (30 Hz for 200 ms each), with an inter-
burst interval of 1 second. Then, 5 seconds later, it received a strong burst at 100 Hz for 500
ms. Synaptic weights were chosen such that pre-synaptic weak tetanic bursts were able to
elicit some spikes in the post-synaptic neuron (winit = 0.12 nS, and wmax = 1 nS). Parameters
for the plasticity rule were β = 0.375, αLTP = 10, αLTD = 80, and T = 100 seconds. The
learning rate was fixed to α = 0.001.

For the LTD priming protocol, the pre-synaptic neuron receives for 60 seconds a very low
frequency stimulation at 5 Hz. Then, 60 seconds later, the same stimulation occurs. Synaptic
weights are chosen such that pre-synaptic weak tetanic bursts are able to elicit some spikes
in the post synaptic neuron (winit = 50 nS, and wmax = 100 nS). The strong values of those
weights could be reduced if more than two neurons were considered. Parameters for the
plasticity rule were β = 0.5, αLTD = 0.001, αLTP = 80, and T = 100 seconds. The learning
rate was fixed to 2.5.

These parameters sets were chosen to reproduce the results obtained in Huang et al. (1992)
and Mockett et al. (2002). These phenomenological results, which inspired the model, can
also be obtained with different parameter sets.

Network model The network is composed of 10,000 excitatory and 2,500 inhibitory neu-
rons, arranged on a grid in a 2D layer. The grid has periodic boundary conditions to avoid
any border effects. Neurons are sparsely connected with a small-world connection scheme:
every neuron is connected to all its neighbours in a circle of radius r with a connection proba-
bility of ε = 2%. A fraction p = 0.25% of these local connections are uniformly redrawn and
re-assigned to randomly selected neurons.

Network dynamical states are defined as either Synchronous or Asynchronous (population
viewpoint) and as either Regular or Irregular (neuron viewpoint). The network was set to an
Asynchronous Irregular state (Brunel, 2000) of approximatively 12 Hz with a mean ISI CV
of 1.6. Synaptic parameters are drawn for Gaussian distributions such that their means are:
δgexc = 4 nS and δginh = 40 nS. The standard deviations of the Gaussian are one third of their
means. Every neuron receives an additional Poisson input at 1000 spikes/sec. Synaptic delays
are considered as being linearly dependent on distance, i.e if ∆ is the distance between two
neurons, we have di j = dsyn+

∆

v with di j the delay between the two neurons, dsyn = 0.2 ms the
minimal delay due to synaptic transmission and v the velocity of axonal conduction. In all sim-
ulations, v = 0.2 m.s−1, i.e. delays in the network are in the range

[
0.2,0.2+

√
2/2v' 3.7

]

Stimulation in the rate and correlation paradigms For 100 seconds, the network is plastic
and converges to its equilibrium. Then, a circular area with a radius r = 0.4 is stimulated
for 10 seconds, followed by 100 seconds for recovery. In the rate stimulation protocol, an
increase of firing rate is sent during the stimulation time: every neuron in this stimulated area
receive an additional external input of 1000 spikes/sec. In the case of correlations, neurons
in the stimulated area receives synchronous spike volleys at a frequency of 50 Hz for 10s.
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Spikes are recorded from the whole network, and weights are recorded every 10 s for all the
synapses in the network. Moreover, to compute cross-correlations between neuron activities,
we recorded during 1 second the membrane potentials of all the neurons in the network with
a time resolution of 2 ms before, during and after the stimulation period.

Simulator All simulations were performed using the NEST simulator (Gewaltig and Dies-
mann, 2007), using the PyNN interface (Davison et al., 2008).

18.2.2 Deriving the BCM rule from the STDP

In this Part, we derive the Bienenstock-Cooper-Munro rule (BCM) from a simple model where
two neurons are connected through a synapse and follow independent Poisson processes. We
first solve the equations corresponding to the STDP eligibility traces for LTP and LTD Eqs. 36
and 40:

rLTP(t) =
∫ t

−∞

dse−(t−s)/τLTP ∑
tpre

δ(s− tpre) (48)

rLTD(t) = α

∫ t

−∞

dse−(t−s)/τLTD ∑
tpost

δ(s− tpost) (49)

These solutions are then injected into Eqs. 37 and 41 that can be solved the same way:

xLTP(t) =
∫ t

−∞

ds′e−(t−s′)/TLTP

∫ s′

−∞

dse−(s
′−s)/τLTP ∑

tpre

δ(s− tpre)∑
tpost

δ(s′− tpost) (50)

xLTD(t) = α

∫ t

−∞

ds′e−(t−s′)/TLTD

∫ s′

−∞

dse−(s
′−s)/τLTD ∑

tpost

δ(s− tpost)∑
tpre

δ(s′− tpre) (51)

Based on these equations, we can write the instantaneous action of LTP and LTD correspond-
ing to the first terms of Eqs. 39 and 43:

δwLTP(t) = ∑
tpost

δ(t− tpost)xLTP(t) (52)

δwLTD(t) = ∑
tpre

δ(t− tpre)xLTD(t) (53)

Before considering the equations for the slow contribution of CaMKII (second terms in
Eqs. 39 and 43), we will treat the simpler case where only the fast variables are taken into
account. We will then treat the complete case.

BCM with fast variables only We will show that a static BCM curve can be obtained
directly from the model with fast variables only. Because each variable δwLTP and δwLTD is
always positive, the rectification is not necessary. We consider the time evolution of the mean
synaptic weight so that we can write Eq. 44 with an average over point processes:

〈w(t)〉 = 〈wLTP(t)〉−〈wLTD(t)〉 (54)

= λ

∫ t

−∞

dt ′
(
〈δwLTP(t ′)〉−〈δwLTD(t ′)〉

)
(55)
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By using Eq. 53 as well as the Poisson auto-correlation function we can write the correspond-
ing LTP and LTD terms

〈δwLTP(t ′)〉 = τLTPρpre

∫ t ′

−∞

ds′e−(t
′−s′)/TLTP

(
ρpostδ(s′− t ′)+ρ

2
post
)

(56)

= τLTPTLTPρpreρ
2
post + τLTPρpreρpost (57)

〈δwLTD(t ′)〉 = ατLTDρpost

∫ t ′

−∞

ds′e−(t−s′)/TLTD(ρpreδ(s′− t)+ρ
2
pre) (58)

= ατLTDTLTDρpostρ
2
pre + τLTDρpreρpost (59)

(60)

where ρpre and ρpost are respectively the pre-synaptic and post-synaptic firing rates. These
terms do not depend on time anymore so that we can directly consider the time derivative of
Eq. 55

d〈w(t)〉
dt

= λ〈δwLTP〉−λ〈δwLTD〉 (61)

= ρpre
(
λτLTPTLTPρ

2
post +λρpost(τLTP−ατLTDTLTDρpre−ατLTD)

)
(62)

= ρpreΦ(ρpost,ρpre) (63)

where Φ(ρpost,ρpre) is a quadratic function in ρpost which crosses the abscissa at 0 and possibly
another point. To obtain the BCM curve, we asked that the second crossing point is positive
as well as the second derivative with respect to ρpost to make sure the curve is convex. The
latter requirement is always true and the primer provides the following constrain

θ
0
LTP =

ατLTDTLTD

τLTPTLTP
ρpre +

ατLTD− τLTP

τLTPTLTP
> 0 (64)

so that:
1

TLTDρpre +1
< α

τLTD

τLTP
(65)

which is true for any ρpre if τLTP < ατLTD. Otherwise the existence of a crossing point will
depend on the pre-synaptic firing rate.

BCM with fast and slow variables In the previous Part, we derived the BCM curve and
the conditions to ensure the existence of a positive threshold. However, one of the main
ingredient of the BCM theory that provides metaplasticity is the sliding threshold that depend
on the past history of the post-synaptic firing through a supra-linear function. We will show
in this Part that the slow variables linked to the negative feedback on the kinase fulfil this role.
The variation of the slow components in LTP and LTD can be considered constant during
measurement of the BCM curve because the time scales are several order of magnitude apart.
As we can compute at least numerically the expected values for δwth

LTP(t) and δwth
LTD(t) for

a given pre- and post-synaptic firing rate, we can derive the relationship between the BCM
threshold and the post-synaptic firing averaged over the past history. We can thus write the
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synaptic weight evolution Eq. 44 as

w(t) = λ

∫ t

−∞

ds
([

δwLTD(s)−δwth
LTD(t))

]
+
−
[
δwLTD(s)−δwth

LTD(t))
]
+

)
(66)

' λ

∫ t

−∞

ds
([

δwLTD(s)−δwth0
LTD)

]
+
−
[
δwLTD(s)−δwth0

LTD)
]
+

)
(67)

(68)

We first derive this equation with respect to time and compute the average over the synaptic
weight:

d〈w(t)〉
dt

= λ

〈[
δwLTD(t)−δwth0

LTD)
]
+

〉
−λ

〈[
δwLTD(t)−δwth0

LTD)
]
+

〉
(69)

The average on the Poisson processes can be written directly as an average over the possible
values of δwLTD described by a stationary distribution. We can thus write

1
λ

d〈w(t)〉
dt

=
∫

dδwLTPP(δwLTP)
[
δwLTP−δwth0

LTP)
]
+

(70)

−
∫

dδwLTDP(δwLTD)
[
δwLTD−δwth0

LTD)
]
+

(71)

=
∫

∞

δwth0
LTP

dδwLTPP(δwLTP)
(

δwLTP−δwth0
LTP

)
(72)

−
∫

∞

δwth0
LTD

dδwLTDP(δwLTD)
(

δwLTD−δwth0
LTD

)
(73)

We will consider three scenarios to see how the slow variables affect the BCM curve for low
post-synaptic firing rates. We will first consider the case in which the pre-synaptic and post-
synaptic firing rate past history are low so that past xLTP and xLTD are themselves very small.
In this case and if αLTD is chosen to be large enough, the second term of Eq. 73 vanishes
because the baseline threshold is considered very high for small post-synaptic firing rates of
the BCM curve. The first term, however, can be approximated by:

1
λ

d〈w(t)〉
dt

=< δwLTP >−δwth0
LTP = τLTPTLTPρpreρ

2
post + τLTPρpreρpost−δwth0

LTP (74)

so that the LTP sliding threshold can be written:

θLTP(δwth0
LTP) =

−1+

√
1+ 4TLTPδwth0

LTP
τLTPρpre

2TLTP
(75)

which is a supra-linear function of the post-synaptic function as required by the BCM theory.
In other words, if the past synaptic activity was very low, the BCM curve will move upward
and favours the impact of LTP. Interestingly, δwth0

LTP depends also on the pre-synaptic past ac-
tivity thus making this metaplasticity both hetero-synaptic and homo-synaptic. Now consider
the opposite case where the past activity was very high. In this situation, δwth0

LTP becomes
extremely high so that the corresponding term in Eq. 73 vanishes whereas δwth0

LTD is close to 0
and we can write Eq. 73 as

1
λ

d〈w(t)〉
dt

=−< δwLTD >+δwth0
LTD =−ατLTDTLTDρpostρ

2
pre− τLTDρpreρpost +δwth0

LTD (76)
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such that the LTD sliding threshold can be written:

θLTD(δwth0
LTD) =

δwth0
LTD

ατLTDTLTDρ2
pre + τLTDρpre

(77)

In this situation, the LTD sliding threshold can slightly increase above 0 whereas the LTP
sliding threshold is infinite and the synaptic weight experience depression. In other words, if
the past synaptic activity is very high, the synaptic weight tends to decrease. The last situation
we will consider is in-between the two previous ones. We will assume that we are close to an
equilibrium point where LTP and LTD are close to their respective thresholds so that synaptic
weights are almost stable. We can rewrite Eq. 73 as

d〈w(t)〉
dt

=
∫

∞

−∞

dδwLTPP(δwLTP)
(

δwLTP−δwth0
LTP

)
(78)

−
∫

∞

−∞

dδwLTDP(δwLTD)
(

δwLTD−δwth0
LTD

)

−
∫

δwth0
LTP

−∞
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LTP

)

+
∫

δwth0
LTD

−∞

dδwLTDP(δwLTD)
(

δwLTD−δwth0
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)

= Φ(ρpost,ρpre)ρpre +λ(δwth0
LTD−δwth0

LTP)−λFLTP

(
δwth0

LTP

)
+λFLTD

(
δwth0
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)

where Φ(ρpost,ρpre) is the BCM curve found in the case where the slow variables are absent
and FLTP

(
δwth0

LTP
)

and FLTD
(
δwth0

LTD
)

are two functions of the LTP and LTD slow variables
respectively. These functions can be expanded around the mean value of each distribution.
We will also approximate each probability distribution by a Gaussian. The general form of
such an expansion is given by

F(c) =
∫ c

−∞

dxP(x)(x− c) (79)

= F(m)+
dF(c)

dc

∣∣∣∣
m
(c−m)+O(δc2) (80)

'
∫ m

−∞

dxP(x)(x−m)−
∫ m

−∞

dxP(x)(c−m) (81)

= − σ√
2π
− 1

2
(c−m) (82)

Once Eq. 82 is used in Eq. 79, we obtain

d〈w(t)〉
dt

=
3
2

Φ(ρpost,ρpre)ρpre +
3
2

λ(δwth0
LTD−δwth0

LTP)+λ
σ(δwLTP)√

2π
−λ

σ(δwLTD)√
2π

The two last terms grow as ρ2
post for Poisson processes such that the overall form of the BCM

curve remains the same. The remaining terms are constant and depend on the post and presy-
naptic firing rate history. These terms will produce a shift in the BCM curve in the downward
direction that results in a supra-linear shift of the sliding threshold toward the left thus pro-
ducing the desired dependence on the past activity. This can be written in a more general
form

d〈w(t)〉
dt

= Φ(ρpost,ρpre,δwth0
LTP,δwth0

LTD)ρpre (83)
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19 Discussion

STDP may be only the visible part of the iceberg, and its complexity should be more deeply
considered. Biophysical and tractable models, such as the one presented in the previous sec-
tion, or those considering triplets of spikes (Pfister and Gerstner, 2006), or post-synaptic
membrane potential (Clopath et al., 2010), are pushing in favour of a rule that can explain
the diversity of the experimental results gathered on plasticity. They both link STDP and the
BCM theory, with the introduction of coefficient taken into account past activity of the post-
synaptic neuron. Nevertheless, in both cases, the dependence and the supra-linear aspect of
the sliding threshold is imposed as an ad hoc constraint. Since the BCM formalism requires
a supralinear power dependence on this past activity, both models introduce a quadratic term
to ensure this behaviour, without any biological explanation. In our model, the exponential
behaviour for the thresholds δwLTP and δwLTD is inherited from molecular biology processes
and can be linked with some kinetic models, as already made in more realistic models of
STDP (Castellani et al., 2001, Zou and Destexhe, 2007). The proposed mechanism is kept
as simple as possible to be tractable in large-scale neuronal networks: the key point is to be
able to understand, phenomenologically, the pathways leading to potentiation and depression,
and how this plasticity is activity dependent. Metaplasticity is crucial in a coherent learning
framework. Similarly to short term plasticity and adaptation (Tsodyks et al., 2000), this may
prevent the system from being too sensitive and focus its learning capacity on new features.

Indeed, plasticity rules should be compatible with the Asynchronous Irregular regime, and
learning should also be robust to the ongoing activity. The rule we developed here was made
for that: during ongoing activity, random pairings elicit internal changes in the synapses that
do not necessarily trigger plasticity, due to some non linearities and some thresholds. Then,
during a learning phase, the system gathers evidences that significant deviation from its spon-
taneous activity occurs. It can be an increase of firing rate, or incoming correlations, but they
both affect the internal variables δwLTP and δwLTD. If the deviations are large enough, thresh-
olds are crossed, and then plasticity changes are validated at the synapse level. If the stimula-
tion is applied continuously, then by metaplasticity the thresholds will be changed, such that
the system will slowly settle into a state where ongoing activity is somehow re-estimated (see
Figure 36), and plasticity will be turned off.

Stability Note that such a thresholding mechanism get rids of the debate about additive or
weight-dependent rules in STDP. In all the previous results in this Part, results were obtained
with an additive implementation, but similar results could be expected without. The key point
which guarantees the stability of the system is now the thresholds δwth

LTP/LTD, and not the
detailed schema of the weight modifications. This can also help to solve the delay sensitivity
investigated in Part IV, and the problem of autapses. Biological evidences for autapses exists
(Lübke et al., 1996) (' 2.3 per pyramidal neuron in Layer 5 of the rat), and they are problem-
atic with the classical STDP rule: they should, according to the way the delay is modelled,
be always depressed or potentiated, but cannot be stable. With homeostasis, and the proposed
rule, they could. BCM theory can provide a substrate whereby the sliding threshold based
on the post-synaptic firing rate will balance the autapse strength. The rule is therefore able
to stabilize statistical deviations from the ongoing activity, and to store them reliably in the
network’s structure. Changes will be kept constant as long as others patterns deviate enough
to trigger synaptic changes by crossing the thresholds, and will be superimposed, as in a Hop-
field network. The advantage is that synaptic changes are here made in a continuum, there is



174 DISCUSSION

Figure 36: Schematic drawing of the learning based on metaplastic spike timing dependent
plasticity. In blue, example of an internal variable δwLTP or δwLTD, fluctuating according
to the ongoing activity. The gray line is a schematic threshold δwth

LTD or δwth
LTP, which is

here constant for the sake of clarity. In the gray shaded region, the threshold is crossed and
plasticity is induced. Nevertheless, the threshold adapts, on a slower time scale, to δwLT P/LT D
(see previous section)

no need to have discrete states to promote and ensure stability. This property emerge from the
recurrent inputs and the ongoing activity, keeping the amount of calmodulin and calcineurin
in ranges that modulate plasticity changes.

Modulation of the Thresholds Throughout the paper, we stress the fact that the regulation
of the thresholds mainly comes from an internal homeostasis, due to the interactions between
the LTP and the LTD molecular pathways, both involving calmodulin. But this can be ex-
tended to a supervised learning framework. Neuromodulators (such as dopamine, Zhang et al.
(2009)) can interact with this internal machinery and affect the values of the thresholds, lead-
ing to temporal windows during which plasticity would be possible at the synapse. Gu and
Yan (2004) have shown that, in the prefrontal cortex, activation of D4 receptors can regulate
the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modulation is a flexible
mechanism allowing dopamine to influence CaMKII and therefore plasticity at the synapse
level. Moreover, some authors (Harris, 2008), hypothesis that a raw and slow version of
the back-propagation algorithm, used to train artificial neuronal networks, is possible within
neurons. A lot of evidence supports the idea that pre-synaptic neurons can know if the post-
synaptic one has been potentiated or depressed, by retrograde signalling molecules (such as
neurotrophins, or endocannabinoids) in the synaptic cleft. These signals can travel backward
along the axon and could also influence the thresholds in our models, by affecting the amount
of calmodulin or impacting activation of the transcription factor CREB (cyclic AMP response
element binding protein) which is critical for promoting neuronal survival (Riccio et al., 1999)
and is known to consolidate LTP (Barco et al., 2002). This impact could also be non homoge-
neous according to the position of the synapse along the dendritic tree, and therefore lead to a
variety of rules according to this position, in line with the results of Letzkus et al. (2006) and
Kampa and Stuart (2006). Nevertheless, the dependence of the rule on the position along the
dendritic tree is a property which seems to be related to the depolarization level in the post-
synaptic neuron. Strong depolarizations can change the shape of the rule (from Hebbian to
anti Hebbian in Letzkus et al. (2006)), and the gradient of plasticity along the dendritic tree is
in favour of the membrane potential: such a membrane potential gradient along the dendritic
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tree exists if we consider the back propagation of the action potential (bAP). Thesee bAPs are
one of the best candidates to inform the synapse that a post-synaptic spike has been emitted,
but their propagation along the dendrite may be subject to attenuation (Larkum et al., 2001)
in certain cell types, such as pyramidal neurons.

Limits of the model The model cannot explain “synaptic tagging” of Frey and Morris
(1997), and the fact that some transient LTP can be observed, in hippocampal slices, when
stimulating Schaffer collaterals, decaying over a timescale of ' 1 hour. In the previous paper,
we explained those priming results based on the thresholds δwth

LTP/LTD. Since they integrate
activity over long time scales and slowly evolve, they can be used for keeping a trace of
previous stimulation, and impact synaptic changes during the re-activation of the pathway,
up to hour later. Pre-activation of the potentation circuitry increases δwLT P, in such a way
that another, stronger, stimulation, even a long time after, will trigger a reduced amount of
LTP. However, no transient LTP is induced by the model: changes are made or not, but while
validated at the synapse level, they are kept constant. Certain in vitro data (see Figure 35)
suggests that this assumption that once a synaptic change is made, its value should be kept
constant is invalid. Depression, for example, seems to be a slowly acting running process,
once initiated at the synapse level. Nevertheless, this regulation of the weights, once LTP or
LTD changes have been made, could be mediated by other homeostatic mechanisms, such as
those described in Turrigiano and Nelson (2004). Processes could act, in parallel, to establish
competition between neurons, and in order to get rid of the silent ones (by making them fire,
or triggering apoptosis), may scale the weights uniformly, whatever the activity is. This nor-
malization process may take part during sleep, when activity is replayed, and may also help
to maintain a dendritic “democracy” within synapses (Roth and London, 2004).

Finally, it has to be noted that some experimental data show that potentiation can be observed
even without any post synaptic spikes (Artola and Singer, 1993, Kelso et al., 1986). Such
results cannot be explained by our model, which is only based on spike times, an indirect
measure of the internal depolarization of the post-synaptic cell. To reproduce, as in Clopath
et al. (2010), results based on membrane potentials, we should slightly extend the frame-
work and incorporate the post-synaptic membrane potential as a quantity that will influence
the thresholds. Basing the models only on the spike times has some pros and cons. From
a computational point of view, this provides an optimized implementation which could be
event-based, triggering computations only at pre and post-synaptic spike times. However, the
drawback is that weights values are only updated when such events appear.

Experimental predictions Previous work has suggested that a likely candidate to medi-
ate metaplasticity processes is an auto-phosphorylated state of calcium/calmodulin kinase II
(Mayford et al., 1995, Bear, 1995, Elgersma et al., 2002, Zhang et al., 2005). In particular,
auto-phosphorylation at site Thr305/306 has an inhibitory effect on the calmodulin kinase
binding acting on a very slow time scale as described in our model (Elgersma et al., 2002,
Zhang et al., 2005). With the previously explained plasticity mechanism, we made an assump-
tion regarding the availability of putative calcineurin for LTD when priming stimulations elicit
LTP negative feedback. This provided the facilitation term for LTD, which is an important in-
gredient of the mSTDP mechanism. This critical prediction can be tested experimentally to
directly verify the present molecular model. An in vitro experiment should be discussed, and
a blockade of the auto-phosphorylation of the calmodulin kinase should test the idea. Cal-
cineurin uncaging should also have an effect, while it is already known that calcium uncaging
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can affect the sign of plasticity. More interestingly, not only the amount of uncaged calcium
can switch LTP to LTD, but also the kinetics of its release (Yang et al., 1999). These kinetics
changes could be explained by the extra time scales added in our model, and integrating past
activity of the neuron.
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20 Introduction

Computational neuroscience is a growing and recent field, compared to better theoretically de-
fined and already explored fields such as mathematics or theoretical physics. A theorem can
not be always demonstrated on a sheet of paper since analytical solutions are far from possi-
ble when speaking about modelling biology, which is everything except clearly defined and
constrained. Approximations, hypotheses, numerical simulations and computational models,
like those presented in Part I, such as the integrate-and-fire neuron, are the sine qua none con-
ditions for predictions and inferences in large-scale models of neuronal networks. Simulating
those networks is crucial for understanding large-scale and generic dynamical properties that
may emerge from the complex interactions between all neurons, and since analytical solu-
tions are hardly tractable, one has to deal with numerical approaches. Unlike the first artificial
neural networks (ANN) (Rosenblatt, 1958), these networks need to take time into account,
each node solving differential equations according to a certain integration scheme, before ex-
changing, by queuing, information in the form of spike times. The fundamental question that
should be raised here, with simulations becoming more and more complex, networks larger
and larger, is “are we sure of the simulation tools that are developed”? Complexity in the
simulations and sensitivity to the code itself is problematic and cannot be neglected. Indeed,
can we be sure that results obtained can be easily reproduced, and if not, what can we do to
enhance this? This question is valid not only for the simulation side, but also for the analysis.
The more data are produced, the more robust and straightforward the analysis should be to
avoid being overwhelmed by inconsistencies that may be hard to spot.

In this Part, I would like to briefly review the large “menagerie” of simulation tools that can
be found nowadays in computational neuroscience. As a neuroscientist doing simulations,
using a well-established simulator is a good option, instead of reinventing the wheel, because
designing a good, efficient, modular and parallel simulator is pure computer science research
on its own: since tools exist and are already developed, they should be used. Nevertheless,
one should be sure of what they are doing and that some hidden assumptions, of which the
developers are unaware or disregard are not introducing bias into the results. There is a grow-
ing need for a better explanation of the basic principles in neuroscience modelling. If a clear
agreement can be settled when speaking about an integrate-and-fire neuron, this is not al-
ways the case for a plastic synapse implementing spike timing dependent plasticity rules, for
a particular wiring scheme, for a particular model of a more complex neuron. Definitions and
clarifications of concepts would greatly improve the readability of the literature of the field,
and enhance reproducibility of the results. This is for example the case of network structure:
Nordlie and Plesser (2010) showed how difficult it is from a modelling paper to know ex-
actly what the model is. Materials and Methods sections are not always explicit enough, may
contain omissions or typographical errors, and therefore, a clear need is pushing in favour of
shared concept and tools. Another example is given by the review of hippocampal neuron
models by Lyle Graham (published in the Cerebral Cortex Book series), showing their lack of
stability when run with a more systematic parametric space exploration.

In this spirit, I will present in this Part PyNN, a common API for neuronal simulators, that
allows enhanced transparency and cross-checking of results by allowing to write the code for a
model only once, and to simulate it independently with several simulators. Several advantages
of such a strategy will be reviewed. I will then present a collaborative effort to share analysis
tools, the NeuroTools project, started with the same goals.
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20.1 Neuronal network simulators

Simulations of large scale networks of integrate and fire neurons are not easy computational
tasks, and the need for parallel computing starts to become crucial when the sizes of the
networks are increased. Although simulations of networks made of fewer than 50000 integrate
and fire neurons can be performed on desktop computers, as soon as the number of synapses
is increased, scaling non linearly with the number of neurons, simulations face memory and
simulation time problems.

It is important to stress that the main bottleneck in those simulations is not the integration of
the differential equations, governing the internal dynamics of the neurons. Even for a large
number of neurons, as long as integrate and fire neurons are used, the system is not over-
whelmed by integration time. The problem is more is the distribution of the spikes, that need
to be queued and distributed according to the transmission delay between neurons. Numer-
ous simulation software tools have been designed to allow the creation and the simulation
of such large scale networks, and a recent comparative review can be found in Brette et al.
(2007). Some of them will be discussed in the following section. Most of these simulation
tools are clock-driven. Every time steps, operations are performed to update the state of the
neuronal network. The differential equations governing the evolution of the dynamics can be
integrated with a fixed or a variable time step, depending on the needed precision. When time
is discretized, spike times are often rounded to the time step precision before being queued
and delivered. Nevertheless, this is not always the case, and some models provide analyti-
cal solutions allowing to interpolated the exact time of the spike, and to avoid this rounding
procedure. Finding an efficient way of dealing with this simulation scheme is a ongoing field
of research (Morrison et al., 2005, 2007b, Eichner et al., 2009). Other approaches use an
so-called event-based framework. If you can provide an analytical solution for the membrane
potential dynamics, you can know exactly when a spike is emitted and get rid of the time
discretization (Rudolph and Destexhe, 2006, 2007, Mouraud et al., 2006, Mattia and Giudice,
2000, Reutimann et al., 2003). This point is important to stress, because when models are
limited to a few neurons, as it is often the case, some differences may emerge and may not
be statistically averaged over a large populations. It is important to be sure that errors are not
amplified by the resolution scheme and that both approaches always converge to statistically
equivalent results, especially when some external phenomena are triggered on the exact spike
times (external stimulation, weight updates, ...).

Besides computational simulators implemented on computers, another promising idea is also
to design silicon devices that faithfully reproduce the biophysics of their neural counterpart.
Building such neuromorphic systems is a hardware engineering problem that was started 20
years ago by Mead and Mahowald (1988), but it can be one option to circumvent the simula-
tion time bottleneck and speed up the exploration of the potentially huge parameter space.

20.2 The simulations tools

As already mentioned in the introduction, a lot of neuronal network simulators have been
designed during the last 20 years. An exhaustive review would be tedious, so we will only
review briefly the most widely used simulators that can be found nowadays. Some are generic
and not especially dedicated to multi-compartmental biophysical spiking neurons (NEURON,
GENESIS), while some are made only to simulate point spiking neurons, non-biophysical
(NEST, CSIM, Brian, MVASpike, SPLIT, SpikeNet). Dendrites are in this case ignored, and
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neurons are considered only from an input/output point of view: if large networks then become
computationally tractable, the drawback is that any kind of filtering and/or processing that may
be performed in the dendrites is ignored. The choice of one category of simulation tools is
closely linked with the problem considered.

NEURON The most popular simulator in neurobiology is NEURON (Hines and Carnevale,
1997), developed in order to model compartmental models of neurons with real morpholog-
ical structures, ion channel densities, particular kinetics, and so on. NEURON is written in
C and C++, with a few bits of Python, but the definition of a the hoc language (and more
recently, the Python wrapper) allows model specifications rather easy to implement and to
compile. Linked models can then be used, simulated, and analysed since NEURON also
comes with a full graphical user interface (GUI) allowing to monitor and record all the sim-
ulated variables. Both the power and expressiveness of the hoc and the GUI contribute a lot
in spreading NEURON in the computational neuroscience community. Nevertheless, the core
object of NEURON is a section (a compartment where equations can be solved, that can be
linked with others to build morphologies), and the simulator was not particularly designed to
deal with point-process neurons. Recently, with the BlueBrain project initiated by Markram
(2006), a lot of efforts have been devoted to improving the parallel implementation of the
software (Hines et al., 2008). The aim of the BlueBrain project is to model, on a BlueGene
super computer, a fully detailed cortical column in order to understand the key parameters
governing its dynamics. Reconstructed cells are modelled with NEURON, connected, and
computations are split over a large number of processors. The compartments of the cells can
be distributed, and MPI is used as a communications layer to distribute spiking events.

NEST In contrast to NEURON, NEST (Gewaltig and Diesmann, 2007) is a simulator dedi-
cated to efficient simulation of large networks of point neurons. Entirely written in C++, it
provides an interpretor layer, the SLI, which uses a stack-oriented language allowing scripts
and on-line commands within a shell. The SLI interface is well documented and offers a
lot of functionality, long scripts can be hard to read and especially hard to understand from
an external point of view. To solve this issue, NEST now has a Python wrapper, PyNEST,
allowing to interface with NEST from Python scripts (Eppler et al., 2008). NEST is primar-
ily made to simulate large-scale models of neuronal networks, so particular efforts are put
into memory efficiency, parallelism, and spike time buffering. The building and simulation
times are fast and scales almost linearly, to a certain extent, with the number of processors. If
we take for example a rather classical network, such as the one made by Vogels and Abbott
(2005). The network is composed of 100000 integrate and fire neurons with current-based
synapses, sparsely and randomly connected, with a probability of ε = 2%. Table 4 shows the
scaling of NEST, either for the building or the simulation time. This was the simulator used
in all the simulations made in this manuscript. In NEST, interactions between neurons can
only be event-based. Those are the events, or messages, that are exchanged and transmitted
through a MPI communication layer. A complex queuing system allows the simulator to take
heterogeneous delays into account.

(P)CSIM CSIM is a C++ based simulator, with a Python scripting interface that has been
rewritten to give a parallel version, PCSIM (Pecevski et al., 2009), with a Python interface.
CSIM took advantage of MATLAB’s GUI, and was made for rather small and scripted neu-
ronal networks. In contrast, PCSIM is one of the most complete spiking neuron simulators,
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Number of Processors Building Time Simulation time
10 244s 19s
20 160s 6.2s
40 147s 5s
80 140s 5s

Table 4: Times for building and simulating for 1 s of simulation time a network of 100000
integrate and fire neurons with current-based synapses. Cell parameters are as in Vogels and
Abbott (2005), and the connectivity ratio is ε = 2%. Hardware is a a cluster of 20 quadri-cores
processors (Intel(R) Xeon(R) at 2.33GHz) with 8Gb of memory each.

offering a lot of functionality and models. Deeply object-oriented, core structures are opti-
mized but not easy to modify. The software lacks it its documentation and examples, and even
if fast and efficient (personal benchmarks show that PCSIM is as fast as NEST for building
and simulating time), the interface may be discouraging for the user. Like in NEST, scaling
of the simulation time is almost linear for large-networks when launched in a distributed en-
vironment, communications being exchanged with MPI. Note that PCSIM, with its Python
based approach, is able to encapsulate Brian code (see below) and therefore already establish
a link between simulators.

Brian Brian (Goodman and Brette, 2008) is a recent and very promising neuronal network
simulator. Entirely written in Python, it uses the power of an interpreted language to allow
easy and user-friendly model specification. Most of its implementation relies on the two core
scientific packages of Python, numpy and scipy. To implement a particular neuron model,
the user just needs to enter the differential equations governing the evolution of the membrane
potential and nothing more. Parsing is done automatically and units are also handled in such a
way that the specified equations are turned into vectorized operations performed at each time
step. Brian is dedicated to spiking neurons, using sparse matrices to store spike times. Recent
optimizations allow to use the power of the GPU to speed up considerably the resolution
of the differential equations (with the help of pycuda). Rather small (< 10000 neurons) and
homogeneous networks are easy to build and simulate. Brian is not parallel, and spikes cannot
be routed between different computational nodes. Networks must fit in a desktop machine’s
memory, and the simulation memory size is mainly imposed by the sparse connectivity matrix
of the network.

20.3 A complex trade-off

Every simulator has its own pros and cons, and simulation needs depend on the problem and
the targeted model: it could be the need for a GUI, that a particular model exists for simulator
and not another, a need for memory efficiency, and so on. If one wants to build very large scale
networks, the need for a simulator which is able to deal with distributed simulations may be
necessary. Neurons themselves are not the main bottleneck: problems are encountered when
networks are too dense, with too many synapses that may be plastic, and so increase the
processing and memory requirements. Spikes buffering, queuing and delivering are the major
problems that need to be addressed when dense (connection probability ε > 5%) networks of
more than 50000 neurons are built. When a first model is started with a small toy network,
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made with an easy to use simulator, one can later encounter the need to simulate the exact
same model but, for example, increase its size. The problem is then that encountering the
need for an MPI based implementation, and therefore for another neuronal network simulator,
should keep the code already made. To address this issue, PyNN is a meta language that
allows network model code to be run on various simulators. This gives several advantages.

Code exchange Computational neuroscience, like all computational sciences, relies on code
transparency and reproducibility of results. When building models with home made code, one
should in theory provide the complete framework allowing readers to reproduce and extend
the results. Documentation, equations, and details of implementation should be available
in such a way that people can easily spot bugs or start a new research project with already
existing models. However, simulation studies suffer from a lack of code exchange and re-
producibility. Since every research group develops its own tools, spending more time on the
research than on the documentation, it is too often hard for someone outside the group to dive
into the code in order to understand what has been done, and why. Nevertheless, it is crucial
to be able to compare, to cross-validate results. PyNN (Python Neuronal Networks), that will
be presented in the following paragraph, was made to circumvent this problem. This could be
seen as an attempt to unify the field of neuronal network simulation by trying to see what are
the common points that can be found between different simulators. Even if all of them have
unique and special features, they all share a common ground which should be more properly
exposed and stressed, in order to get rid of the simulator dependency. For example, most of
them have integrate and fire neurons, are able to connect them with current or conductance
based synapses, are able to record membrane potentials or spikes. In order to be sure that the
integration methods used by each of them is consistent, and that simulation results are coher-
ent, the idea of PyNN was to provide a simple high-level application programming interface
(API) to use several simulators, according to the user’s choice. The advantages are numerous.
The most obvious one is code exchange. If one research group is more used to code everything
with NEST, for example, and another one is most familiar with NEURON, they should still
be able to compare code, while keeping the particular knowledge gained on their favourite
simulator. To achieve such a goal, one needs to establish a common language between the
simulators, because as Figure 37 shows, since every simulator uses its own language, its own
definitions, it may be hard to easily convert the code. Different interfaces and language syntax
make the understanding more complex.

Using a common language for the code will lead to a gain in transparency and definition of
the language itself will help to clarify and set the key concepts shared by all those simulators.
Then, by launching the exact same code with several simulators, one can verify that results do
not depend on the details of the implementations.

Code reliability PyNN also allows to better understand the hidden differences that may
exists between simulators. For example, let us take the case of a plastic synapse, with the
spike timing dependent plasticity rule (STDP), seen in Part IV. From a modelling point of
view, STDP is ill defined at zero time difference: what should the neuronal simulator do if
pre- and post-synaptic neurons fire exactly at exact the same time? If the synapse is hosted
by the pre-synaptic neuron, then the post-synaptic spike will always arrive at the synapse
after a time, δt, the simulation time step, and the synapse will always be potentiated. On the
other hand, if the synapse is hosted by the post-synaptic neuron, then the opposite is true:
pre will always precede post, and the synapse will be depressed. STDP is very sensitive to
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Figure 37: Comparison of SLI code (the native language of NEST) (Left), and NEURON
code (Right), for several basic operations, such as creating cells and setting variables.

high frequencies and to small errors of integration made by the simulator. This is where the
integration scheme, whether clock driven or event based can make a large difference to the
results. The closer in time the spike times are, the higher the synaptic differences. Figure
38 shows the differences for three simulators, with the exact same protocol. Two connected
neurons, the first one being just a spike player sending spikes every 2 ms for 600 ms to a
target neuron which is a classical integrate and fire neuron, with typical parameters. The
synapse between the two neurons is governed by a classical additive STDP rule. As one
can see, the exact same short simulation, run with the three simulators, leads to qualitatively
similar results, but small differences can already be seen. This is due do rounding errors and
differences in integration algorithms, and to how delays are handled by those simulators. One
needs to be aware of this, to be sure computational results are not too closely linked with the
hidden implementation scheme behind.

To underline these differences, we constructed a toy network of 100 integrate and fire neurons
with exponential current based synapses, with an all-to-all connection scheme. The exact de-
tail of the cell parameters is unimportant. The only important point is that synapses within the
network are plastic, subject to an additive STDP rule with classical parameters. Every neuron
received a particular Poisson input at a fixed frequency, and we run the exact same simulation
on three distinct simulators supported by PyNN, taking care that seeds for the Poisson inputs
are the same between several runs, so that results should, in theory, be identical between sim-
ulators. The simulation was run for 20 s, in order to appreciate eventual divergence between
simulators. The neurons were strongly coupled at the beginning, and initial weights were set
to 0.5 nS, while wmax, for the STDP rule, was set to 1 nS. With NEST, the average frequency
of these cells was 20 Hz, 14 Hz with NEURON and 13 Hz with PCSIM. As one can see in
Figure 39, some structure emerges in the final connectivity matrix due to the particular pat-
terns imposed in the external spikes trains. It is important to have this in mind while playing
with STDP in too small-sized networks. The sensitivity of the rule to small errors in spike
times is amplified, and fine structure may be simulator dependent. A more exhaustive analysis
of the significativity of these differences should be perfomed.

Benchmarks PyNN also allows benchmarking of simulators, in term of simulation and
building times for the exact same network. Of course, these comparisons would require,
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Figure 38: Modification, under an additive STDP rule, of a plastic synapse for an integrate and
fire neuron receiving input spike trains at a fixed frequency during 600 ms. The exact same
code is launched with several simulators, and the exact spiking patterns of this post-synaptic
neuron are different.

Figure 39: Connectivity matrices after 20 s of simulation, for three neuronal network simula-
tors, of the exact same network with plastic synapses. The network is made of 100 neurons,
wired with an all to all connection scheme.

to be fair, that the backends are well-coded and optimized for each simulator. This is cur-
rently, in PyNN, only the case for NEST and NEURON. The PCSIM and Brian backends
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Simulator Building Time Simulation time Excitatory Rate Inhibitory rate
NEURON 102 s 624 s 78 Hz 77 Hz
NEST 14 s 63 s 78 Hz 77 Hz
PCSIM (2000 s) 40 s 73 Hz 73 Hz

Table 5: Comparison of the simulation and building times, with the exact same network, be-
tween several simulators. The network is a classical balanced random network of 5000 neu-
rons, as in Brunel (2000). Times in parentheses indicates that they are clearly not optimized
(loops are performed in Python). The differences in the firing rates of the populations are due
to the integration procedures used by the simulators, since the connectivity is identical.

Simulator Building Time Simulation time Excitatory Rate Inhibitory rate
NEURON 83 s 489 s 3 Hz 3 Hz
NEST 22 s 22 s 3 Hz 3 Hz
PCSIM (>1500 s) 9 s 3 Hz 3 Hz
BRIAN (>1500 s) 12 s 3 Hz 3 Hz

Table 6: Comparison of the simulations and building times, with the exact same network,
between several simulators. The network is a classical balanced random network of 10000
neurons, as in Vogels and Abbott (2005) with current based synapses. Times in parentheses
indicates that they are clearly not optimized (loops are performed in Python). The differ-
ences in the firing rates of the populations are due to the integration procedures used by the
simulators.

are working, but still need to be optimized. Simulation times can still be compared because
they are only simulator dependent: PyNN can only slow down the building time, if loops or
generic functions are used when simulator specific low level functions exist, for example to
connect randomly groups of neurons, or set cell parameters. If we take a classical balanced
random network, such as the one in Brunel (2000), made with two populations of excitatory
(4000 cells) and inhibitory (1000 cells) neurons, connected with a probability ε = 10%, and
classical parameters to be in a asynchronous irregular regime, we have the following results
in Table 5 for 1 s of simulation.

Similar benchmarks can be made on a larger and more diluted network, such as the one of
Vogels and Abbott (2005), with 10000 neurons and ε = 2% (see Table 6 for current based
synapses, and Table 7 for conductance based synapses), for 2 s of simulation.

Note that in all cases, the exact same random networks are created, with the same connectivity
matrix. The main results here is the simulation times, because as already said, building times
are slower in Brian and PCSIM because the backends do not provide optimized C++ func-
tions to speed up the wiring procedures (they do, but PyNN does not yet use them). NEST,
BRIAN and especially PCSIM are clearly faster than NEURON, because they are dedicated
and optimized for such simulations. However, addition of a new model or a new synapse type
may be less user friendly and documented than for NEURON. Differences observed in the
firing rates are only due to the intrinsic resolution scheme used by the simulators, and this is
interesting to note than PCSIM displays small but significant difference with the two others.
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Simulator Building Time Simulation time Excitatory Rate Inhibitory rate
NEURON 83 s 678 s 9 Hz 10 Hz
NEST 22 s 187 s 9 Hz 10 Hz
PCSIM (>1500 s) 28 s 10 Hz 10 Hz
BRIAN (>1500 s) 15 s 10 Hz 10 Hz

Table 7: Comparison of the simulations and building times, with the exact same network,
between several simulators. The network is a classical balanced random network of 10000
neurons, as in Vogels and Abbott (2005) with conductance based synapses. Times in paren-
thesis indicates that they are clearly not optimized (loops are performed in Python). The
differences in the firing rates of the populations are due to the integration procedures used by
the simulators.

21 PyNN: A Common Interface for Neuronal Network Sim-
ulators.

21.1 Main results

In the following article, I contribute to the PyNN design of the API, and I have coded part of
the implementation of the NEURON and the NEST backends.
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Computational neuroscience has produced a diversity of software for simulations of networks of 
spiking neurons, with both negative and positive consequences. On the one hand, each simulator 
uses its own programming or confi guration language, leading to considerable diffi culty in porting 
models from one simulator to another. This impedes communication between investigators and 
makes it harder to reproduce and build on the work of others. On the other hand, simulation 
results can be cross-checked between different simulators, giving greater confi dence in their 
correctness, and each simulator has different optimizations, so the most appropriate simulator 
can be chosen for a given modelling task. A common programming interface to multiple 
simulators would reduce or eliminate the problems of simulator diversity while retaining the 
benefi ts. PyNN is such an interface, making it possible to write a simulation script once, using 
the Python programming language, and run it without modifi cation on any supported simulator 
(currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN 
increases the productivity of neuronal network modelling by providing high-level abstraction, 
by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic 
analysis, visualization and data-management tools. PyNN increases the reliability of modelling 
studies by making it much easier to check results on multiple simulators. PyNN is open-source 
software and is available from http://neuralensemble.org/PyNN.

Keywords: Python, interoperability, large-scale models, simulation, parallel computing, reproducibility, computational 

neuroscience, translation

compiler standards and simulators develop. Another is that model 
source code is often not written with reuse and extension in mind, 
and so considerable rewriting to modularize the code is necessary. 
Probably the most important barrier is that code written for one 
simulator is not compatible with any other simulator.

Although many computational models in neuroscience are writ-
ten from the ground up in a general purpose programming lan-
guage such as C++ or Fortran, probably the majority use a special 
purpose simulator that allows models to be expressed in terms 
of neuroscience-specifi c concepts such as neurons, ion channels, 
synapses; the simulator takes care of translating these concepts 
into a system of equations and of numerically solving the equa-
tions. A large number of such simulators are available (reviewed in 
Brette et al., 2007), mostly as open-source software, and each has its 
own programming language, confi guration syntax and/or graphi-
cal interface, which creates considerable diffi culty in translating 
models from one simulator to another, or even in understanding 
someone else’s code, with obvious negative consequences for com-
munication between investigators, reproducibility of others’ models 
and building on existing models.

However, the diversity of simulators also has a number of positive 
consequences: (i) it allows cross-checking – the probability of two 

INTRODUCTION
Science rests upon the three pillars of open communication, repro-
ducibility of results and building upon what has gone before. In 
these respects, computational neuroscience ought to be in a good 
position, since computers by design excel at repeating the same 
task without variation, as many times as desired: reproducibility 
of computational results ought, then, to be a trivial task. Similarly, 
the Internet enables almost instantaneous transmission of research 
materials, i.e. source code, between labs.

However, in practice this theoretical ease of reproducibility and 
communication is seldom achieved outside of a single lab and a 
time frame of a few months or years. While a given scientist may 
easily be able to reproduce a result obtained a few months ago, 
precisely reproducing a result obtained several years ago is likely to 
be rather more diffi cult, and the general experience seems to be that 
reproducing the results of others is both diffi cult and time consum-
ing: very many published papers lack suffi cient detail to rebuild a 
model from scratch, and typographic errors are common.

Having available the source code of the model greatly improves 
the situation, but here still there are numerous barriers to reproduc-
ibility and to building upon previously published models. One is that 
source code can rapidly go out of date as computer  architectures, 

Edited by:

Rolf Kötter, Radboud University 
Nijmegen, The Netherlands

Reviewed by:

Graham Cummins, Montana State 
University, USA
Fred Howell, Textensor Limited, UK

*Correspondence:

Andrew Davison, UNIC, Bât. 32/33, 
CNRS, 1 Avenue de la Terrasse, 91198 
Gif sur Yvette, France. 
e-mail: andrew.davison@unic.cnrs-gif.fr



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 11 | 2

Davison et al. Simulator-independent modelling with PyNN

different simulators having the same bugs or hidden assumptions 
is very small; (ii) each simulator has a different balance between 
effi ciency (how fast the simulations run), fl exibility (how easy it is 
to add new functionality; the range of models that can be simu-
lated), scalability (for parallel, distributed computation on clusters 
or supercomputers), and ease of use, so the most appropriate can 
be chosen for a given task.

Addressing the problems associated with an ecosystem of mul-
tiple simulators while retaining the benefi ts would greatly increase 
the ease of reproducibility of computational models in neuroscience 
and hence make it easier to verify the validity of published models 
and to build upon previous work.

There are at least two possible (and complementary) approaches 
to this. One is to enable direct, effi cient communication between 
different simulators at run-time, allowing different components 
of a model to be simulated on different simulators (Ekeberg and 
Djurfeldt, 2008). This approach addresses the problem of building a 
model from diverse components, but still leaves the problem of hav-
ing to use different programming languages, and does not enable 
straightforward cross-checking. The other approach is to develop 
a system for model specifi cation that is simulator-independent. 
Translation then only has to be done once for each simulator and 
not once for each model.

Here we can take advantage of the recent, rapid emergence of 
the Python programming language as an alternative interface to 
several of the more widely-used simulators. Thus, for example, both 
NEURON and NEST may be controlled either via their original, 
native interpreter (Hoc and SLI, respectively) or via Python. More 
recent simulators (e.g. PCSIM, Brian) have Python as the only avail-
able scripting language. This widespread adoption of Python is 
probably due to a number of factors, including the powerful data 
structures, clean and expressive syntax, extensive library, maturity 
of tools for numerical analysis and visualization (allowing use of a 
single language for the entire modelling workfl ow from simulation 
to analysis to graphing), and the ease-of-use of Python as a glue 
language which allows computation-intensive code written in a 
low-level language such as C to be transparently accessed within 
high-level Python code.

Python alone does not address the translation problem (although 
it does make the translation process easier, since at least simple data 
structures such as lists and arrays are the same for each simulator), 
since neuroscience-specifi c concepts are still expressed differently. 
However, it is now possible to defi ne a simulator-independent 
Python interface for neuronal network simulators and to implement 
automatic translation to any Python-enabled simulator. We have 
designed and implemented such an interface, PyNN (pronounced 
“pine”). In this paper we describe its design, concepts, implemen-
tation and use. We do not attempt here to provide a complete 
user guide – this may be found online at http:// neuralensemble.
org/PyNN.

DESIGN GOALS
When designing and implementing a common simulator interface, 
the following goals should be taken into account. These are the 
goals we have kept in mind when designing and implementing 
the PyNN interface, but they are equally applicable to any other 
such interface.

Write the code for a model once, run it on any supported simu-
lator or hardware device without modifi cation. This is the primary 
design goal for PyNN.

Support a high-level of abstraction. For example, it is often 
preferable to deal with a single object representing a population of 
neurons than to deal with all the individual neurons directly. Each 
single neuron can be accessed when necessary, but in many cases 
the population is the more useful abstraction. The advantages of 
this approach are that (i) it is easier to maintain a conceptual idea 
of the model, without being distracted by implementation details, 
and (ii) the internal implementation of an object can be optimized 
for speed, parallelization or memory requirements without chang-
ing the interface presented to the user.

Support any feature provided by at least two supported simula-
tors. The aim is to strike a balance between supporting all features 
of all simulators (unfeasible) and supporting only the subset of 
features common to all simulators (overly restrictive).

Allow mixing of PyNN and native simulator code. PyNN should 
not limit the range of models that can be implemented. Following 
the two-simulator rule, above, there will be things that are possible 
in one simulator and not in any other. Although a model imple-
mentation consisting of 100% PyNN is the best scenario for run-
ning on multiple simulators, an implementation with 50% PyNN 
code will be easier to convert between simulators than one with 
no PyNN code.

Facilitate porting of models between simulators. PyNN changes 
the process of porting a model between simulators from all-or-
 nothing, in which the validity of the translated model cannot be 
tested until the entire translation is complete, to an incremen-
tal approach, in which the native code is gradually replaced by 
 simulator-independent code. At each stage, the hybrid code remains 
runnable, and so it is straightforward to verify that the model 
behaviour has not been changed.

Minimize dependencies, to make installation as simple as pos-
sible and maximize fl exibility. There are no visualization and few 
data analysis tools built-in to PyNN, which means the user can use 
any such tools they wish.

Present a consistent interface on output as well as on input. 
The formats used for simulation outputs are consistent across 
simulator back-ends, making it a stable base upon which to build 
more complex systems of simulation control, data-analysis and 
visualization.

Prioritize compatibility over optimizations, but allow 
 compatibility-breaking optimizations to be selected by a deliber-
ate choice of the user (e.g. the compatible_output fl ag of the 
various print() methods is True by default, but can be set to 
False to get potentially-faster writing of data to fi le).

API Versioning. The PyNN API will inevitably evolve over time, 
as more simulators are supported and to take account of the pref-
erences of the community of users. To ensure backwards compat-
ibility, the API should be versioned so that the user can indicate 
which version was used for a particular implementation. Note that 
the examples given in this paper use version 0.4 of the API.

Transparent parallelization. Code that runs on a single processor 
should run on multiple processors (using MPI) without changes.

Some of these goals are somewhat contradictory: for exam-
ple, having a high level of abstraction and making porting easy. 
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Reconciling this particular pair of goals has led to the presence in 
PyNN of both a high-level, object-oriented interface and a low-
level, procedural interface that is more similar to the interface of 
many existing simulators. These will be discussed further below.

USAGE EXAMPLES
Before describing in detail the concepts underlying the PyNN 
interface, we will work through some examples of how it is used 
in practice: fi rst a simple example using the low-level, procedural 
interface and then a more complex example using the high-level, 
object-oriented interface.

For the simple example, we will build a network consisting of 
a single integrate-and-fi re (IF) cell receiving spiking input from a 
Poisson process.

First, we choose which simulator to use by importing the rel-
evant module from PyNN:

>>> from pyNN.neuron import *

If we wanted to use PCSIM, we would just import pyNN.pcsim, 
etc. Whichever simulator back-end we use, none of the code below 
would change.

Next we set global parameters of the simulator:

>>> setup(timestep=0.1, min_delay=2.0)

Now we create two cells: an IF neuron with synapses that respond 
to a spike with a step increase in synaptic conductance, which then 
decays exponentially, and a “spike source”, a simple cell that emits 
spikes at predetermined times but cannot receive input spikes.

>>> ifcell = create(IF_cond_exp,

…                  {'i_offset': 0.11,

…                   'tau_refrac': 3.0,

…                   'v_thresh' : -51.0})

>>> times = map(float, range(5,105,10))

>>> source = create(SpikeSourceArray,

…                  {'spike_times': times})

Behind the scenes, the create() function translates the stand-
ard PyNN model name, IF_cond_exp in this case, into the model 
name used by the simulator, Standard_IF for NEURON, iaf_
cond_exp for NEST, for example and also translates parameter 
names and units into simulator-specifi c names and units. To take 
one example, the i_offset parameter represents the amplitude of 
a constant current injected into the cell, and is given in nanoamps. 
The equivalent parameter of the NEST iaf_cond_exp model has 
the name I_e and units of picoamps, so PyNN both converts the 
name and multiplies the numerical value by 1000 when running 
with NEST. Standard cell models and automatic translation are 
discussed in more detail in the next section.

The create() function returns an ID object, which provides 
access to the parameters of the cell models, e.g.:

>>> ifcell.tau_refrac

3.0

>>> ifcell.tau_m = 12.5

>>> ifcell.get_parameters()

{'tau_refrac': 3.0, 'tau_m': 12.5,

 'e_rev_E': 0.0, 'i_offset': 0.11,

 'cm': 1.0, 'e_rev_I': -70.0,

 'v_init': -65.0, 'v_thresh': -51.0,

 'tau_syn_E': 5.0, 'v_rest': -65.0,

 'tau_syn_I': 5.0, 'v_reset': -65.0}

Having created the cells, we connect them with the connect() 
function:

>>> connect(source, ifcell, weight=0.006,

…          synapse_type='excitatory', delay=2.0)

Now we tell the system what variable or variables to record, run 
the simulation and fi nish.

>>> record_v(ifcell, 'ifcell.dat')

>>> run(200.0)

>>> end()

The result of running the above model is shown in Figure 1, 
which also shows the degree of reproducibility obtainable between 
different simulators for such a simple network.

The low-level, procedural interface, using the create(), 
 connect() and record() functions, is useful for simple models 
or when porting an existing model written in a different language 
that uses the create/connect idiom. For larger, more complex net-
works we have found that an object-oriented approach, with a 
higher-level of abstraction, is more effective, since it both clarifi es 
the conceptual structure of the model, by hiding implementation 
details, and allows behind-the-scenes optimizations.
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FIGURE 1 | Results of running fi rst example given in the text, with 

NEURON, NEST and PCSIM as back-end simulators. (A) Entire membrane 
potential trace with integration time-step 0.1 ms. (B) Zoom into a smaller 
region of the trace, showing small numerical differences between the results 
of the different simulators. (C) Results of a simulation with integration 
time-step 0.01 ms, showing greatly reduced numerical differences.
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To illustrate the high-level, object-oriented interface we turn 
now from the simple example of a few neurons to a more complex 
example: a network of several thousand excitatory and inhibitory 
neurons that displays self-sustained activity (based on the “CUBA” 
model of Vogels and Abbott (2005), and reproducing the bench-
mark model used in Brette et al. (2007)). This still is not a par-
ticularly complicated network, since it has only two cell types, no 
spatial structure and no heterogeneity of neuronal or connection 
properties, but in demonstrating how building such a network 
becomes trivial using PyNN we hope to convince the reader that 
building genuinely complex, structured and heterogeneous net-
works becomes manageable.

Again, we begin by choosing which simulator to use. We also 
import some classes from PyNN’s random module.

>>> from pyNN.nest2 import *

>>> from pyNN.random import (NumpyRNG,

…                           RandomDistribution)

We next specify the parameters of the neuron model (the same 
model and same parameters are used for both excitatory and inhibi-
tory neurons).

>>> cell_params = {

…     'tau_m':     20.0,  'tau_syn_E':   5.0,

…     'cm':         0.2,  'tau_syn_I':  10.0,

…     'v_rest':   -49.0,  'v_reset':   -60.0,

…     'v_thresh': -50.0,  'tau_refrac':  5.0

…     }

Parameters with dimensions of voltage are in millivolts, time in 
milliseconds and capacitance in nanofarads. The units convention 
is discussed further in the next section.

We now initialize the simulation, this time accepting the default 
values for the global parameters.

>>> setup()

Now, rather than creating each cell separately, we just create a 
Population object for each different type of cell:

>>> pE = Population(4000, IF_cond_exp,

…                  cell_params,

…                  label="Excitatory")

>>> pI = Population(1000, IF_cond_exp,

…                  cell_params,

…                  label="Inhibitory")

By default, all cells of a given Population are created with identi-
cal parameters, but these can be changed afterwards. Here we wish 
to randomize the value of the membrane potential at the start of 
the simulation to values between −50 and −70 mV.

>>> unif_distr = RandomDistribution('uniform',

…                                  [-50,-70])

>>> pE.randomInit(unif_distr)

>>> pI.randomInit(unif_distr)

randomInit() is a convenience method for randomizing the ini-
tial membrane potential. For the more general case of randomizing 
any cell parameter use rset().

Just as individual neurons are encapsulated within Populations, 
connections between neurons are encapsulated within Projections. 
To create a Projection object, we need to specify how the neurons will 
be connected, either via an algorithm or via an explicit list. Different 
algorithms are encapsulated in different Connector classes, e.g. 
FixedProbabilityConnector, AllToAllConnector. An explicit 
list of connections can be provided via a FromListConnector or a 
FromFileConnector.

>>> FPC = FixedProbabilityConnector

>>> exc_conn = FPC(0.02, weights=0.004,

…                 delays=0.1)

>>> inh_conn = FPC(0.02, weights=0.051,

…                 delays=0.1)

Note that weights are in microsiemens and delays in millisec-
onds. Where the delay is not specifi ed, the global minimum delay 
specifi ed in the setup() function is used. Here we set all weights 
and delays of a Projection to the same value, but it is equally 
possible to pass the constructor a RandomDistribution object, 
as we did above for the initial membrane potential, or an explicit 
list of values.

To create a Projection, we need to specify the pre- and post-
synaptic Populations, a Connector object, and a synapse type. 
The standard IF cells each have two synapse types, “excitatory” 
and “inhibitory”. User-defi ned models can use arbitrary names, 
e.g. “AMPA”, “NMDA”.

>>> e2e = Projection(pE, pE, exc_conn,

…                   target='excitatory')

>>> e2i = Projection(pE, pI, exc_conn,

…                   target='excitatory')

>>> i2e = Projection(pI, pE, inh_conn,

…                   target='inhibitory')

>>> i2i = Projection(pI, pI, inh_conn,

…                   target='inhibitory')

Having constructed the network, we now need to instrument 
it, using the record() (for recording spikes) and record_v() 
(membrane potential) methods of the Population objects. Here 
we choose to record spikes from 1000 of the excitatory neurons 
(chosen at random) and all of the inhibitory neurons, and to record 
the membrane potential of two specifi c excitatory neurons. We then 
run the simulation for 1000 ms.

>>> pE.record(1000)

>>> pI.record()

>>> pE.record_v([pE[0], pE[1]])

>>> run(1000.0)

After running the simulation, we can access the results or write 
them to fi le.

>>> pI.getSpikes()[:5]

array([[ 715. ,     1.5],

       [ 609. ,     1.6],

       [ 708. ,     1.7],

       [ 796. ,     1.7],

       [  34. ,     1.8]])
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>>> pE.get_v()[:5]

array([[  0.   ,     0.1  ,  -55.073],

       [  1.   ,     0.1  ,  -50.163],

       [  0.   ,     0.2  ,  -55.098],

       [  1.   ,     0.2  ,  -50.212],

       [  0.   ,     0.3  ,  -55.122]])

>>> end()

The results of running simulations of the above network with 
two different simulator back-ends are shown in Figure 2.

PRINCIPAL CONCEPTS
To achieve the goal of “write the code for a model once, run it 
on any supported simulator without modifi cation” requires (i) a 
 common interface, (ii) neuron and synapse models that are stand-
ardized across simulators, (iii) consistent handling of physical 
units, (iv) consistent handling of (pseudo-)random numbers. To 
achieve the twin goals of supporting a high-level of abstraction 

and  facilitating porting of models between simulators requires 
both an object- oriented and a procedural interface. The imple-
mentation of all these requirements is described in more depth in 
the following. We also illustrate the mixing of PyNN and native 
simulator code, and how PyNN can support features that are found 
in only a single simulator back-end, by describing support for 
multi- compartmental models.

STANDARD CELL MODELS
A fundamental concept in PyNN is the cell type – a given model 
of a neuron, representable by a set of equations, and comprising 
sub-threshold behaviour, spiking mechanism and post-synaptic 
response. The public interface of a cell type is mainly defi ned by its 
parameters. Different neurons of the same cell type may have very 
different behaviour if they have different values of the parameters. 
For example, the Izhikevich model (Izhikevich, 2003), can repro-
duce a wide range of spiking patterns, from fast-spiking through 
regular spiking to multiple types of bursting, depending on the 
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FIGURE 2 | Results of running the second example given in the text, 

with NEURON and NEST as back-end simulators. Note that the network 
connectivity and initial conditions were identical in the two cases. 
(A) Membrane potential traces for two excitatory neurons. Note that the 
NEST and NEURON traces are very similar for the fi rst 50 ms, but after that 
diverge rapidly due to the effects of network activity, which amplifi es the 

small numerical integration differences. (B) Spiking activity of excitatory (black) 
and inhibitory (green) neurons. Each dot represents a spike and each row of 
dots a different neuron. All 5000 neurons are shown. (C) Distribution of 
pooled inter-spike intervals (ISIs) for excitatory and inhibitory neurons. 
(D) Distribution over neurons of the coeffi cient of variation of 
the ISI [CV(ISI)].
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parameter values chosen. A cell type is therefore a model type rather 
than a biologically defi ned cell type (such as “Layer V pyramidal 
neuron”, for example).

When using a given simulator back-end, PyNN can work with 
any cell type that is supported by that simulator. In this case, the cell 
type is generally represented by a string, holding a model name that 
is meaningful for that simulator, e.g. “iaf_neuron” in NEST.

Of course, such a cell type will only work with one simulator. To 
create a model that will run on different simulators requires you to 
use one of PyNN’s built-in, standard cell models, each represented 
by a sub-class of the StandardCell class. The models provided 
by PyNN include various simple IF models, the Izhikevich-like 
adaptive exponential IF model (Brette and Gerstner, 2005), a single-
compartment neuron with Hodgkin–Huxley sodium and potas-
sium channels, and various models that emit spikes (e.g. according 
to a Poisson process) but cannot receive them.

The StandardCell class contains machinery for translating 
model names, parameter names and parameter units between 
PyNN standardized values and simulator-specifi c values. This is 
particularly useful when the underlying simulators use different 
unit systems or different parameterizations of the same set of equa-
tions, e.g. when one simulator expects the membrane time constant 
and another the membrane leak conductance. An example of the 
translations performed by PyNN is given in Table 1.

Currently, all the standard cell types are single-compartment 
or point neuron models, since PyNN currently supports only one 
simulator for multi-compartmental models (NEURON). Further 
details on using multi-compartmental models with PyNN’s 
NEURON back-end are given below. We plan in future to allow 
specifying multi-compartmental cell types using a NeuroML 
description (Crook et al., 2005).

UNITS
As is clear from the previous section, each simulator back-end has 
its own convention for which units to use for which physical quanti-
ties. The exception to this is Brian, which has a system for explicitly 
specifying units and for checking that equations are dimensionally 
consistent. In the future, we plan to adopt Brian’s system for PyNN, 
but for now we have chosen to use a convention, which is similar to 

that of NEURON and NEST in that the units are those that tend to 
be used by experimental physiologists. An alternative would have 
been the convention used by PCSIM (and also by the GENESIS 
simulator) of using pure SI units with no prefi xes. The advantage of 
the latter convention is that there is no need for checking equations 
for dimensional consistency. The disadvantage is that numerical 
values in such a system are often very large or very small, and hence 
the human intuition for reasonable and unreasonable parameter 
values is mostly lost.

Irrespective of the relative merits of different conventions, the 
most important thing is that PyNN now provides a single conven-
tion which is valid across simulators. In detail, the convention is as 
follows: voltage – mV, current – nA, conductance – µS, time – ms, 
capacitance – nF.

STANDARD SYNAPSE MODELS
In PyNN, the shape and time-course of the elementary post- synaptic 
current or conductance change in response to a pre-synaptic spike 
are considered to be a part of the post-synaptic neuron model, while 
all other properties of a synaptic connection, notably its weight (the 
peak current or conductance of the synaptic response), delay (for 
point models, this implicitly includes axonal propagation, chemical 
transmission and dendritic propagation; more morphologically 
and/or biophysically detailed models may model explicitly some 
or all of these sources of delay), and short- and long-term plas-
ticity, are considered to depend on both pre- and post-synaptic 
neurons, and so are encapsulated in the concept of “synapse type” 
that  mirrors the “cell type” discussed above.

The default type of synaptic connection in PyNN is static, with 
fi xed synaptic weights. To model dynamic synapses, for which the 
synaptic weight (and possibly other properties, such as rise-time) 
varies depending on the recent history of post- and/or pre- synaptic 
activity, we use the same idea as for neurons, of standardized, 
named models that have the same interface and behaviour across 
simulators, even if the underlying implementation may be very 
different.

Where the approach for dynamic synapses differs from that 
for neurons is that we attempt a greater degree of compositional-
ity, i.e. we decompose models into a number of components, for 

Table 1 | Comparison of parameter names and units for different implementations of a leaky integrate-and-fi re model with a fi xed fi ring threshold 

and current-based, alpha-function synapses. This model is called IF_curr_alpha in PyNN, iaf_psc_alpha in NEST, LIFCurrAlphaNeuron in PCSIM 

and StandardIF in NEURON (this is a model template distributed with PyNN and is not in the standard NEURON distribution). Manual conversion of names 

and units is straightforward but error-prone and time-consuming. PyNN takes care of such conversions transparently.

Parameter PyNN NEST NEURON PCSIM

Resting membrane potential v_rest mV E_L mV v_rest mV Vresting V

Reset membrane potential v_reset mV V_reset mV v_reset mV Vreset V

Membrane capacitance cm nF C_m pF CM nF Cm F

Membrane time constant tau_m ms tau_m ms tau_m ms taum s

Refractory period tau_refrac ms t_ref ms t_refrac ms Trefrac s

Excitatory synaptic time constant tau_syn_E ms tau_syn_ex ms tau_e ms TauSynExc s

Inhibitory synaptic time constant tau_syn_I ms tau_syn_in ms tau_i ms TauSynInh s

Spike threshold v_thresh mV V_th mV v_thresh mV Vthresh V

Injected current amplitude i_offset nA I_e pA i_offset nA Iinject A
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example for short-term and long-term dynamics, or for the  timing-
dependence and the weight-dependence of STDP rules, that can 
then be composed in different ways.

The advantage of this is that if we have n different models for 
component A and m models for component B, then we require only 
n + m models rather than n × m, which had advantages in terms 
of code-simplicity and in shorter model names. The disadvantage 
is that not all combinations may exist, if the underlying simula-
tor implements composite models rather than using components 
itself: in this situation, PyNN checks whether a given composite 
model AB exists for a given simulator and raises an Exception if 
it does not. The composite approach may be extended to neuron 
models in future versions of the PyNN interface depending on the 
experience with composite synapse models.

Currently only a single model exists in PyNN for the short-term 
plasticity component, the Tsodyks–Markram model (Markram et al., 
1998). For long-term plasticity there is a spike-timing-dependent 
plasticity STDP component, which itself is composed of separate 
timing-dependence and weight-dependence components.

LOW-LEVEL, PROCEDURAL INTERFACE
We refer to the procedural interface as “low-level” because it deals 
with a lower level of abstraction – individual neurons and indi-
vidual synapses – than the object-oriented interface. The procedural 
interface consists of the functions create(), connect(), set(), 
record() (for recording spikes) and record_v() (for record-
ing membrane potential). Each of these functions operates on, or 
returns, either individual cell ID objects or lists of such objects. As 
was described in the Usage Examples section, as well as being passed 
around as arguments, the ID object may be used for accessing/
modifying the parameters of individual neurons, and takes care 
of parameter translation using the StandardCell mechanisms 
described above.

It is possible to some extent to mix the low-level and high-level 
interfaces. For example, it is possible to access individual neurons 
within a Population as ID objects and then use the connect() 
function to connect them, instead of using a Projection object.

Why have both a low-level and high-level interface? Having 
both is a potential source of confusion for users and is defi nitely a 
maintenance burden for developers. The main reason is to support 
the use of PyNN as a porting tool. The majority of neuronal net-
work models using existing simulators use a procedural approach, 
and so conversion to PyNN is easier if PyNN supports the same 
approach. In addition, when developing a PyNN interface for a 
simulator, or for neuromorphic hardware, that deals primarily with 
individual cells and synaptic connections, it is easier to implement 
only the low-level interface, since the high-level interface can be 
built upon it.

HIGH-LEVEL, OBJECT-ORIENTED INTERFACE
Object-oriented programming has been used for many years in 
computer science as a method for reducing program complexity. As 
the ambition and scope of large-scale, biologically detailed neuronal 
network modelling increases, reducing program complexity will 
become more and more critical, as the limiting factor in computa-
tional neuroscience becomes the productivity of the programmer 
and not the capacity of the computer (Wilson, 2006). It is for this 

reason that the preferred interface in PyNN for developing new 
models is an object-oriented one.

The object-oriented interface is built around three main 
classes:

Population – a group of cells all with the same cell type (model 
type). It is generally considered that the cells in a Population 
should all represent the same biological cell type, i.e. although 
parameter values may vary between cells in the group, all cells 
should have qualitatively the same fi ring response. This is not 
enforced, but is a good guideline to follow for producing under-
standable code. The Population class eliminates tedious itera-
tion over lists of neurons and enables more effi cient, array-based 
management of neuron properties.

Projection – the set of connections of a given synapse type 
between two Populations. Creating a Projection requires speci-
fying the pre- and post-synaptic Populations, the synapse type, 
and the algorithm used to determine which neurons connect to 
which.

Connector – an encapsulation of the connection algorithm 
used in creating a Projection. Simple examples of such algorithms 
are “all-to-all”, “one-to-one” and “connect-each-pre-and-post-
 synaptic-cell-with-a-fi xed-probability”. It is also possible to provide 
an explicit list of which cells are to be connected to which others. 
Each algorithm is defi ned within a subclass of the Connector class. 
PyNN contains a number of such classes, but it is fairly straight-
forward for a user to defi ne their own algorithms.

In future development of PyNN, we plan to extend the interface 
to still higher-level abstractions, such as layers, cortical columns, 
brain areas and inter-areal projections. We also aim to use the high-
level interface as a link between spiking network models and more 
abstract models that do not represent individual neurons, such as 
mean-fi eld models.

RANDOM NUMBERS
The central nervous system contains many sources of noise, and 
activity patterns are often suffi ciently complex, and possibly cha-
otic, to make a stochastic representation a reasonable model.

This can become a problem when comparing the behaviour of a 
given model run on different simulators, since random differences 
might obscure real inconsistencies between implementations of the 
model. Similarly, when performing distributed computations on 
parallel machines, the model behaviour should not depend on the 
number of processors used (Morrison et al., 2005), and random 
differences can conceal real differences between the parallel and 
serial implementations.

For these reasons, it is important to be able to use identical 
sequences of random numbers in different simulators, and to have 
the random number used at a particular point in the program 
execution be independent of which processor it is running on.

Another consideration is that simulations in most cases use only 
pseudo-random sequences, and low-quality random number gen-
erators (RNGs) may have correlations between different elements of 
the sequence that can signifi cantly affect the qualitative behaviour 
of a network. Hence it is necessary to be able to test the simulation 
with different RNGs.

PyNN supports simulator-independent RNGs and use of dif-
ferent generators – currently any of the generators provided by 
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the numpy package or by the GNU Scientifi c Library (GSL) can 
be used.

This is done by wrapping the numpy and GSL RNGs in classes 
with a common interface. PyNN’s random module contains the 
classes NumpyRNG and GSLRNG, which both have a single method, 
next(n, distribution, parameters), which returns n ran-
dom numbers from a distribution of type distribution with 
parameters parameters, e.g.

>>> from pyNN.random import NumpyRNG, GSLRNG

>>> rngN = NumpyRNG(seed=76847376)

>>> rngG = GSLRNG(seed=87548753)

>>> rngN.next()

0.91457981651574294

>>> rngG.next(5)

array([ 0.02518011, 0.79118205, 0.16679516, 

…      0.1902914, 0.66204769])

>>> rngN.next(3, 'gamma', [2.0, 0.5])

array([ 0.48903019, 0.63129009, 0.70428452])

>>> rngG.next(distribution='uniform')

0.93618978746235371

Since all PyNN code that uses random numbers accesses the 
RNG classes only through this next() method, a user can substi-
tute their own RNG simply by defi ning a wrapper class with such 
a method.

Since very often one wishes to use the same random distribution 
repeatedly, rather than changing distribution each time, the random 
module also provides the RandomDistribution class, which is 
initialized with the distribution name and parameters, and there-
after the next() method is simplifi ed to take a single argument, 
the number of values to draw from the distribution, e.g.

>>> from pyNN.random import (NumpyRNG,

…                           RandomDistribution)

>>> rng = NumpyRNG(seed=8745753)

>>> gamma_distr = RandomDistribution('gamma',

…                                   [2.0, 0.5],

…                                   rng=rng)

>>> gamma_distr.next(3)

array([ 0.72682412, 0.82490159, 1.03882654])

Note that NumpyRNG and GSLRNG distributions may not 
have the same names, e.g. “normal” for NumpyRNG and “gaussian” 
for GSLRNG, and the arguments may also differ. One of our future 
plans is to extend the random module in order to harmonize names 
across RNGs.

MULTI-COMPARTMENTAL MODELS
PyNN currently supports only a single simulator, NEURON, that 
is suitable for many-compartment models. Given the principle 
of supporting simulator-independence only for features that are 
shared by at least two of the supported simulators, and given 
PyNN’s focus on network modelling, PyNN does not provide an 
API for specifying simulator-independent multi-compartmental 
models. This is a possible future development – preliminary work 
has been done on a PyNN interface to the MOOSE simulator (Ray 
and Bhalla, 2008) – but a more likely path would be to make use 

of the NeuroML standards for specifying multi-compartmental 
 models. In this scenario, the fi lename of a NeuroML level 2 fi le, 
specifying a single cell type, would be passed as the cellclass 
argument to the PyNN create() function or Population 
constructor.

However, since native and PyNN code can be mixed, the 
pyNN.neuron module already supports simulations with multi-
 compartmental models. The pre-synaptic compartment whose 
voltage is watched to trigger synaptic transmission (e.g. axon 
terminal) can be specifi ed using the source argument to the 
Projection constructor, and the post-synaptic mechanism speci-
fi ed with the target argument.

DEBUGGING
Should an error occur in a PyNN simulation, a good fi rst step is to 
re-run it on another simulator back-end and so narrow down the 
source of the problem to one back-end in particular. Nevertheless, 
it has proven to be the case that the additional layers of abstrac-
tion provided by PyNN sometimes make it harder to track down 
sources of errors. To counterbalance this, PyNN traps errors coming 
from the simulator core and employs Python’s introspection capa-
bilities to provide additional information about the error context. 
For example, if an invalid parameter name is provided to a neu-
ron model, the error message lists all the valid parameter names 
for that model. Furthermore, logging can be switched on via the 
init_logging() function in the pyNN.utility module, causing 
detailed information about what the system is doing to be written 
to fi le, a valuable resource for tracking down bugs.

IMPLEMENTATION
PyNN is both a defi nition of a common simulator interface and 
an implementation of this interface for each supported simulator. 
PyNN is implemented as a Python package containing a common 
module, which defi nes the API and contains functionality common 
to all simulator back-ends, a random module (described above), 
and a module for each simulator back-end, as shown in Figure 3. 
Each simulator module separately implements the API, although 
it can make use of much shared code in common. In most cases, 
the simulator modules have been implemented by, or in close col-
laboration with, the simulator developers.

PyNN currently fully supports the following simulators: 
NEURON (Carnevale and Hines, 2006; Hines and Carnevale, 
1997; Hines et al., 2008), NEST (Eppler et al., 2008; Gewaltig and 
Diesmann, 2007), PCSIM (http://www.lsm.tugraz.at/pcsim/) and 
Brian (Goodman and Brette, 2008). Support for MOOSE (Ray 
and Bhalla, 2008) and for export in NeuroML format (Crook et al., 
2005) is under development.

PyNN also supports the Heidelberg neuromorphic hardware 
system (Schemmel et al., 2007). This illustrates a major benefi t of 
the existence of a common neuronal simulation interface: novel 
simulation or emulation systems do not need to develop their own 
programming interface, but can benefi t from an existing one that 
guarantees interoperability with existing tools. Using PyNN as the 
interface to neuromorphic hardware systems provides the possi-
bility of closing the gap between the two domains of numerical 
simulation and physical emulation, which have so far coexisted 
rather separately.
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LIMITATIONS ON REPRODUCIBILITY
For a given model with a given parameter set run on a given version 
of a given simulator, it should be possible to exactly reproduce a 
simulation result, independent of computer architecture (except 
where this affects the precision of the fl oating-point representa-
tion) or operating system. For parallel systems, results should also 
be independent of how many threads or processes are used in the 
computation, although here exact quantitative reproduction is 
harder to achieve. Reproducibility across different versions of a 
given simulator is not essential provided the precise version used 
to generate a given result is specifi ed, but it is of course highly 
desirable. When running a model on different simulators, exact 
reproduction is impossible to achieve, except in simple cases, due 
to round-off errors in fl oating point calculations. When validating 
a model implementation by running it on two or more simulators, 
therefore, what level of reproducibility is achievable, and how can 
we tell whether any differences are due to round-off error or to 
implementation errors?

To get a preliminary handle on this problem, we have com-
pared the difference in model activity between two simulators to 
the difference due to two different initial conditions with the same 
simulator.

Our test case is the balanced random network, based on Vogels 
and Abbott (2005), whose implementation was shown above. The 
activity pattern of this network is very sensitive to initial condi-
tions (chaotic or near-chaotic), and so we cannot use differences in 
the precise spike pattern to measure reproducibility: we are more 
interested in the statistical properties of the activity, and so we 
have chosen to take the distribution of inter-spike intervals (ISIs) 
of excitatory neurons (see Figure 2C) as a measure of network 
activity.

To measure the difference between the distributions from two 
different runs we use the Kolmogorov–Smirnov two-sample test. 
We ran the simulation ten times, each time with a different seed 
for the RNG used to generate the initial membrane potential 
distribution, with both NEURON and NEST back-ends. This gave 
values for the Kolmogorov–Smirnov D-statistic between 0.008 
and 0.026 (n � 19000) with a mean of 0.015, with associated 

p-values (probability that the two distributions are the same) 
between 6.3 × 10−5 and 0.68 with mean 0.15.

We then ran the simulation twenty times just on NEURON, each 
time with a different RNG seed, to give 10 pairs of distributions. In 
this case the D-values were in the range 0.007–0.026, mean 0.015, 
and the p-values in the range 2.8 × 10−5 to 0.77, mean 0.20.

In summary, the differences due to different simulators are in 
almost exactly the same range as those due to different initial con-
ditions, suggesting that the differences between the simulators are 
indeed due to round-off errors and that there are not, therefore, 
any implementation errors in this case.

It is also interesting to note that in most cases the null hypothesis 
is supported, i.e. the distributions are the same, but that for some 
initial conditions there are highly signifi cant differences between 
the ISI distributions. The ISI distribution may not therefore be the 
best measure for reproducibility in this case.

DISCUSSION
In this article we have presented PyNN, a Python-based common 
simulator interface, which allows simulator-independent model 
specifi cation. PyNN is already in use in a number of research groups, 
and has been a key technology enabling improved communication 
between labs in a pan-European collaborative project with a major 
component of modelling and of neuromorphic hardware develop-
ment (the FACETS project: http://www.facets-project.org).

By providing a standard simulation platform, PyNN also has 
the potential to act as the foundation for other, simulator agnostic 
but neuroscience-specifi c, tools such as analysis, visualization and 
data-management software.

PyNN is not the only project to address simulator- independent 
model specifi cation and simulator interoperability (review in 
Cannon et al., 2007). neuroConstruct (Gleeson et al., 2007) is a 
tool to develop networks of morphologically-detailed neurons 
using a graphical user interface (GUI), that can generate code 
for both the NEURON and GENESIS simulators. A limitation 
with respect to PyNN is that since it uses code generation rather 
than a direct interface, neuroConstruct cannot receive informa-
tion back from the simulator except by reading the data fi les it 
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generates. A second limitation is that features that are not avail-
able through the GUI cannot be incorporated in a model. The 
NeuroML standards (Crook et al., 2005, http://www.neuroml.org) 
are intended to provide an infrastructure for exchanging model 
specifi cations between groups in a simulator-independent way. 
Their scope includes much more detailed levels of modelling, e.g. 
membrane ion channels and detailed dendritic morphology, than 
are supported by PyNN. They have the advantage over PyNN of 
being language-independent, since specifi cations are written in 
XML, for which tools exist in all major programming languages. 
The major disadvantage of purely declarative specifi cations is lack 
of fl exibility: if a concept or entity is not defi ned in the standard, 
it is not possible to specify models that use it, whereas with a 
procedural/imperative or mixed declarative-procedural specifi -
cation such as is achievable with PyNN, arbitrary specifi cations 
are possible.

Although we emphasize here the differences between the 
GUI, pure-declarative, and programming-interface approaches 
to  simulator-independent model specifi cation, in fact they are 
highly complementary. Graphical interfaces are particularly 
good for beginners, for teaching, for giving high-level overviews 
of a system, and for integrating analysis and visualization tools. 
It would be very useful for neuroConstruct to be able to gener-
ate PyNN code, for example, in addition to code for NEURON 
and GENESIS. Declarative specifi cations reach the highest levels 

of system- independence, for the range of concepts that are sup-
ported. They are also particularly suitable for transformation into 
human-readable formats and for automated GUI generation. As 
such, they seem to be best suited for domains in which the model-
ling approach is fairly stable, e.g. for describing neuron morpholo-
gies or non- stochastic ion channel models. In PyNN, we plan to 
support  simulator-independent multi-compartmental models 
using NeuroML: in this scenario cell models would be specifi ed in 
NeuroML while PyNN would be used for network specifi cation 
and for simulation setup and control.

Our main priorities for future development of PyNN are to 
increase the number of supported simulators (simulator  developers 
who are interested in PyNN support for their simulator are encour-
aged to contact us), improve the support for multi-compartmental 
modelling, and extend the interface towards higher-level abstrac-
tions, such as cortical columns and more abstract modelling 
approaches. PyNN is open source software (CeCILL licence, http://
www.cecill.info) and has an open development model: anyone who 
wishes to contribute is welcome and invited to do so.
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22 The analysis workflow in neuroscience

22.1 Heterogeneity of the data

In computational neuroscience, one has to deal with simulated data, resulting from in computo
simulations. Nevertheless, the main point is that these data need to be compared to experimen-
tal data, acquired and analysed with various and complex systems, each of them being tuned
and dedicated to a particular setup or experiment. The devices used to record data impose a lot
of various and heterogeneous custom file formats, and dedicated software reimplements too
often similar functions, because manufacturers do not always give the technical specification
of their internal structures, in order to force users to use home made toolboxes or software.
To address this issue, from the experimental data side, some projects such as NeuroShare
[http://neuroshare.sourceforge.net/] tried to design a common API able to read/write several
file formats, in order to provide in a transparent manner some high level objects common to
all those file formats to a MATLAB interface. Experimental recordings are saved with objects
such as Blocks of recordings, Segments, Trials, Epochs, Spikes, and so on. As in the case
of PyNN, canonical structures for these objects should be defined in order to cross-validate
numerical results and promote code and data exchange.

22.2 On the analysis tools

Some toolboxes have already been made to take advantage of this NeuroShare implementa-
tion. This is the case, for example, of FIND, developed by Meier et al. (2008). But even
without the NeuroShare framework, a lot of custom analysis toolboxes took advantage of the
MATLAB environment, and especially the graphical user interface offered by the software, to
explore and visualize the data. To list more of those analysis tools in computational neuro-
science that can be found nowadays, one can mention Chronux, Spike Train Analysis Toolkit,
sigTOOL. These tools are general, allowing a user to interact with his data, while some other
are more dedicated to clustering and spike sorting algorithm (KlustaKwik, MClust, OSort,
Wave clus). In addition, there are also plenty of commercial tools sold with the hardware de-
vices used to acquire the data. Others approaches, like OpenElectrophy (Garcia and Fourcaud-
Trocmé, 2009), try to get rid of the MATLAB dependency and build a coherent and consistent
environment for data analysis in Python. Python offers a nice and clean definition of objects,
and objects saved after a recording session such as Electrode, Segment, SpikeTrain, and so on
can be easily turned into Python objects.

22.3 The NeuroTools project

Background of the initiative NeuralEnsemble [http://neuralensemble.org] is a multilateral
effort to coordinate and organise neuroscience software development based around the Python
programming language into a larger, meta-simulator software system. To this end, Neu-
ralEnsemble hosts services for source code management and bug tracking (Subversion/Trac)
for a number of open-source neuroscience tools and organizes an annual workshop devoted
to collaborative software development in neuroscience. In this NeuralEnsemble framework,
NeuroTools is a collection of tools to support all tasks associated with a neural simulation
project which are not handled by the simulation engine. NeuroTools is written in Python,
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and works best with PyNN, or one of the growing list of simulation engines with a Python
front-end such as NEURON, NEST, PCSIM, FACETS Neuromorphic VLSI, Brian, MOOSE/-
GENESIS3, Neurospaces/GENESIS. NeuroTools provides modules to facilitate simulation
setup, parametrization, data management, analysis and visualization. The data-related tools
are equally suited to analysis of experimental data, although that is not the primary motivation
for their development. As with PyNN, its aim is to allow cross-validation of results and code
exchange in order to more quickly detect and isolate bugs or errors.

An implementation in Python NeuroTools is developed in Python because, as an inter-
preted language, it offers a nice opportunity to dynamically interact with the data. Data can be
loaded and explored through scripts or direct commands, as is the case with MATLAB. Nev-
ertheless, the Python implementation is much more powerful because it is based on a growing
and very active scientific community. It has a much better support for structured programming
and has a wide range of tools outside numerics and data handling. Scientific packages such
as numpy, scipy, matplotlib are now turning Python into a very efficient and free MAT-
LAB replacement, much more modular. Python provides the power of a clear object-oriented
language with a very modern and powerful syntax, and benefits from a growing scientific
community providing a lot of various packages as modules that could be plugged or not. The
structure of NeuroTools itself was based on this modularity. As one can see in Figure 40, the
project is divided into several sections. The signals package gathers all the analysis func-
tions for discrete (spike trains) or analog (membrane potential) signals that may be recorded
during a simulation or an experiment. The parameters module provides a framework for
simulation parameters handling, to simplify exploration and backups when simulations with
numerous parameters are launched.

Figure 40: NeuroTools structure. Independent packages can be dynamically loaded to enable
tools and/or functions. Among these, the signals package, the visualization package, the
parameters package.

In the following, one can see a script example of some very light and easy functions of Neuro-
Tools. The results of the script can be seen in Figure 41. As one can see, the code is compact
and the command line provided by Python allows exploration and plots of high-level func-
tions, applied on numerical data. The transparency in the source code and the documentation
should increase the confidence in the results.

>>> from NeuroTools.signals import *
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>>> from NeuroTools.stgen import *

>>> spikes = load_spikelist(’data.gdf’,t_start=0,t_stop=500)
>>> spikes.firing_rate(time_bin=5, display=subplot (221))
>>> spikes.raster_plot(1000,display=subplot (222))
>>> pairs = RandomPairs(spikes , spikes , no_silent=True)
>>> spikes.pairwise_cc(1000, pairs_generator=pairs ,display=subplot (223))

>>> gen = StGen()
>>> time = arange(0,1000.)
>>> rates = sin(time/20)+1
>>> spikes = gen.inh_poisson_generator (100*rates , time , time[-1])
>>> spikes.raster_plot(display=subplot(224), kwargs={’marker ’:’+’})
>>> plot(time , rates , ’r--’)

Figure 41: Result of the simple and compact example script written in the text. NeuroTools
offers an easy and friendly way to explore and analyze complex data.

23 Discussion

Spreading the tools Combining PyNN and NeuroTools, the idea is to build a coherent and
unified framework to load and analyse data, either generated by neuronal network simulators
or by real recordings performed during experiments. The current state of this global project
is some way from fully achieving its goal. Although PyNN is now more and more popu-
lar, offering a clear and well-documented API, the situation is not the same for NeuroTools.
Merging it with OpenElectrophy is intended to push it to the next step, i.e. NeuroTools will
gain access to a broader spectrum of users, coming from various and heterogeneous back-
grounds. Since OpenElectrophy was primarily made to analyse data recorded during in vivo
and in vitro experiments, this is complementary to the core function of NeuroTools, made to
analyse data mainly coming from large-scale simulations of networks. Ideally, one could have
a single neuroscience software tool that should be able to read/write various file formats, no
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matter how they have been acquired, and explore this data in a single consistent environment.
The key point, to achieve such a goal, is to reach a certain critical mass where users will be
recruited into developers and contribute, by the addition of generic function, to the develop-
ment of the software. Documentation is essential to make it as simple as possible in order to
convince them to contribute to the code without having to dive too much into the complexity
of the main kernel. Regarding NeuroTools, this documentation step, although started, is not
finished and the key structure of the software is not stabilized yet.

On large-scale neuronal networks In all the simulator literature, the quest is mainly for
speed, memory efficiency, and finally the size of the network that can be simulated. Neverthe-
less, most of those simulations are made with rather generic and homogeneous networks, such
as the balanced random ones, and it should be pointed out that, as long as the networks are ho-
mogeneous, increasing the size may sometimes be a waste of time. All the results obtained in
this manuscript, whether for the Frozen Paradigm (Part II), for the topological study (Part III)
of for plasticity (Part IV) were obtained in 12500 cell networks (or network with similar size),
but results were always tested in larger networks of 100000 neurons. In all cases, results
were qualitatively identical. Since networks are homogeneous, without complex structures
embedded in them, increasing the size does not alter nor change the results. Simulating large
networks is therefore always something that should be weighted, because it may just make the
analysis harder, being overwhelmed by data and recordings. The larger the size is, the more
precise the question which is addressed to the system should be. To circumvent this problem,
design of non-homogeneous and structured network should be simplified and handling of the
data enhanced to speed up the research work flow and parameter exploration.

PyNN evolutions PyNN is still in development, and efforts should be maintained to con-
tinue the development of a coherent framework for neuronal network simulations. The API is
stable, even if some new structures and functionalities will be added, to promote the design of
more and more complex networks. 0.7 release of PyNN will have sub-populations and assem-
blies (heterogeneous groups of populations) and the connections set algebra. Computational
power is not expensive nowadays, so code complexity is more and more the main limitation
when one wants to design biologically plausible networks with various cell types, connectiv-
ities, and not end up with systems overwhelmed by parameters. This can be tremendously
reduced by creating high-level and generic structures in PyNN, such as cortical columns,
layered structures, connectivities as functions of neuronal parameter and distances (can be
Euclidean distances, or distances in other parameters spaces, such as orientation preference,
...). The goal is to have a simple and robust way to create a realistic neuronal network model,
including all the complexity needed to explain and reproduce the huge variety of experimental
results obtained in literature.
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In this manuscript, we tried to establish a link between evoked and ongoing spiking activ-
ity in cortical-like networks, and to see how and why both could share similar statistics. In
a first part, we showed what could be the interest for a chaotic dynamical system near the
edge of chaos, in term of reproducibility and information transmission, to be stimulated by
inputs sharing the same statistics to those of its ongoing activity. We then explored plausible
biological processes that could promote such an unsupervised learning within neuronal net-
works, in order to establish this match between evoked and ongoing activity. Sensory inputs
coming from the periphery have particular spatio-temporal properties that are stored during
critical periods of development in the connectivity of the primary sensory areas by unsuper-
vised learning rules, such as STDP. This is the case in V1, where it is known that the receptive
fields emergence and development is strongly link to visual experience (Freeman and Petti-
grew, 1973). Brain is a labile reservoir which is fed by the external world, and imprinted
in its structure by its statistics. Rephrasing the seminal paper of Spinelli and Jensen (1979),
plasticity in neocortex is a mirror of sensory experience.

Since plenty of biological evidence demonstrate that connectivity of neuronal network is re-
flected in the dynamics (see Part II), learned statistics should be spontaneously replayed while
no external inputs are present. How this replay is achieved, and what key patterns or songs
are useful for the system is still unknown. Are they synfire chains, cortical songs, rate-based
measures, the answer may depend on the areas and on the complexity of the task. As we saw,
the more the stimuli are complex in V1, the sparser the neuronal responses, and the amount of
correlations integrated by the neuron tends to be close to the one present in the ongoing activ-
ity. This is why understanding the neuronal code is difficult: in computer science, the coding
strategy is fixed, and the basic instructions sent to the processor are always the same, whatever
the program. With neuronal networks, all coding schemes can coexist and be alternatively ac-
tivated as a function of the complexity of the external stimuli. For a “simple” stimulus, with
a low informational content, such as drifting grating, the rates of discharge would give all
the needed information to decode the input. In contrast, a natural scene with a particular
frequency spectrum could trigger finer correlations, and their exact times of occurrences can
become crucial for the system.

The Boltzmann machine We propose to see the primary sensory networks as Boltzmann
machines, as discussed in Part IV. When particular inputs are presented to a clamped layer
(the thalamical neurons), they efficiently drive the global spatio-temporal activity of the whole
network composed by the free-units and their own dynamics. Unsupervised learning rules,
such as mSTDP explored in Part V, are able to store and to keep a stable trace of external
statistics in the ongoing activity, reverberated by the recurrent connections. A more detailed
and exhaustive study needs still to be performed in order to have a better understanding on the
speed of learning and on the memory capacity of such a learning system. In Part V, we just
established a proof of concept that external inputs, with some deviations from the ongoing
activity, could be stored and kept by a modified version of STDP, taking homeostasis into
account. Mainly firing rates and correlations were explored and stored, but since the Frozen
Paradigm worked with precise spikes patterns, this should also be explored. The mSTDP rule
should be used to embed, as in (Hosaka et al., 2008), synfire chains or precise patterns within
the network. The question of their replay can be accurately addressed with tools already used
(Ikegaya et al., 2004, Mokeichev et al., 2007), and it has to be linked with the concept of
polychronization(Izhikevich, 2006).

A cascade of such Boltzmann machines would be, conceptually, very close to the “deep belief
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networks” (Hinton and Salakhutdinov, 2006). The Frozen Paradigm is a proof that even pre-
cisely time coded spatio-temporal patterns could be learned and replayed, even if they may
not be used by the system. The brain does not need to implement a proper coding/decoding
transformation. The received information should be transformed eventually at a read-out stage
into a response, but the exact input values are not relevant any more for the system, as soon as
they have imprinted the processing unit dynamics. In that sense, the Frozen Paradigm raises
an interesting concern: low dimensional spatio-temporal pattern fragment can reactivate a
perseverating complex sequence of precisely time locked action potentials.

Toward realistic V1 models In the previous topographical networks, studied in Part III or
IV, cross-correlations between neurons mainly depend on the distance because this was the
only relevant information which has been put into the system, imposed by the connectivity
profile used to establish the connections. However, as pointed out in Part III, distance is not
the only property constraining the connectivity within neurons. In V1, it has been shown
that cross-correlations depend also on the orientation preferences (Ts’o et al., 1986), and this
would be in favour of even more realistic networks. In this manuscript, we stressed the fact
that connectivity is crucial for the network since it constrains the attractor of its ongoing activ-
ity. It is therefore important, to design realistic V1 models, to generate realistic connectivities
capturing the statistics of the evoked activities in such a way as transfer this knowledge into
the wiring. The best way would be to use realistic plasticity rules, such as the mSTDP rule.
Such rule, that needs still to be better studied, allows connectivity to keep a persistent trace of
the input patterns. By starting from a random network, presentation of spike trains constructed
by a retina/LGN model (Wohrer and Kornprobst, 2009) can be used to train the network, and
impact the statistics of the emerging receptive fields (Wenisch et al., 2005).

Figure 42: Orientation map obtained after Hebbian learning in Topographica. Upper Right:
Profile of the connections from excitatory and inhibitory units, as a function of distance.
Lower: example of a receptive field for one excitatory (respectively inhibitory) unit (left,
respectively right).
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Nevertheless, all these learning algorithms for large scale networks converge slowly, and a
practical and easy way to generate more realistic V1 models is to use fast Hebbian learning on
firing-rate neurons, which is known to converge efficiently and in a fast manner (Bednar et al.,
2004). Software such as Topographica is able to create complex and inhomogeneous features
maps as a function of the inputs that have been presented during the development. Such
maps can then be used to initialize the connectivity of larger networks of spiking neurons,
before turning them into a plastic state, and see how stable they are when STDP (or mSTDP)
is active. A conceptual scheme is explained in Figure 42. An orientation preference map
obtained with Topographica, with the lateral connections for excitatory and inhibitory cells is
shown after learning. Then, each pixel is seen as a cortical column: all the rate-based units are
turned into small balanced random networks, and connections strengths between the units are
turned into probabilities of connections. We obtained a spiking network with a complex and
inhomogeneous structure, embedding several features maps (pinwheels, orientations, ocular
selectivity, directions, ...) as a function of its Hebbian learning. The question of the stability
of such networks, under spike timing dependent plasticity rules, is essential.

Further works should investigate the dynamics of such networks, with more patchy connec-
tivity. The only problem is that Hebbian learning, in those mainly inhibitory driven network,
provides mainly long-range inhibition and short range excitation within V1, while biological
evidences suggest a broader and more distributed excitation over long intracortical distances
(Stettler et al., 2002).

STDP and backpropagation algorithm Despite all biological evidences for supervised
learning in the brain triggered by external neuromodulator release (Romo and Schultz, 1990),
one should notice that the neural network algorithm that has been most successful in engi-
neering and real-world applications of supervised learning use mechanisms distinct from the
Hebb’s rule. This algorithm is known as error backpropagation or backprop. Synaptic plas-
ticity in this network requires a training signal to flow backwards along the connections (a
retroaxonal signal or a diffusible messenger in the extracellular medium), so that each neuron
integrates a training (or error) signal from the same cells to which it sends outputs. With mul-
tilayered feed-forward artificial neuronal networks, one can use a gradient descent on a cost
function comparing the current output of the neuron to a desired one and adjust the weights by
an iterative process backpropagating errors: this approach has been shown to be a universal
function approximator. The computing power offered by such a backpropagation method is
still a pure engineering concept, and has never been identified in real neurons. It can be there-
fore interesting to study if biological evidence can support such an algorithmic method. A
possibility is to and gain knowledge with biological data recorded in vitro, and study if back-
propagation can be used as a generic principle to shape neuronal network structures in order to
produce desired pattern of activity, at the spiking level. As reported by some authors (Harris,
2008), biological evidences show how retroaxonal signals are indeed used by neurons, and
could support a kind of backprop algorithm in vivo. But even if they are present, retroax-
onal signals in real neurons are too slow to implement a real backprop algorithm in vivo. In
artificial neuronal networks (ANNs), weight changes are based on the instantaneous differ-
ence between the pre-synaptic activity and the retroaxonal error signal, requiring the training
signal to arrive while the input pattern is still present, in order to give computational support
for the gradient descent. Given that biological synaptic timescales are typically if the order
of '10ms, while known forms of retroaxonal messages with signalling endosome (Zweifel
et al., 2005) are much slower, computation of instantaneous correlations seems impossible.



Nevertheless, such retroaxonal training signals could consolidate causal useful associations
in neuronal networks, and be put in the context of metaplasticity (see Abraham (2008) for
review) and influence the thresholds of the mSTDP rule: this integrated and distributed feed-
back coming from target neurons may regulate efficiently the long-term maintenance of local
pre-synaptic plasticity.
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Yves Frégnac, Marc Pananceau, Alice René, Nazyed Huguet, Oliver Marre, Manuel Levy, and
Daniel Schulz. A re-examination of hebbian-covariance rules and spike timing-dependent
plasticity in cat visual cortex in vivo. Frontiers in Synaptic Plasticity, to appear, 2010.

U. Frey and R. G. Morris. Synaptic tagging and long-term potentiation. Nature, 385(6616):
533–536, Feb 1997.

Robert C Froemke and Yang Dan. Spike-timing-dependent synaptic modification induced by
natural spike trains. Nature, 416(6879):433–438, Mar 2002.

Robert C Froemke, Mu-Ming Poo, and Yang Dan. Spike-timing-dependent synaptic plasticity
depends on dendritic location. Nature, 434(7030):221–225, Mar 2005.

Robert C Froemke, Ishan A Tsay, Mohamad Raad, John D Long, and Yang Dan. Contribution
of individual spikes in burst-induced long-term synaptic modification. J Neurophysiol, 95
(3):1620–1629, Mar 2006.
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